

Vocabulaire

Montrer que la fonction $f: x \mapsto \ln (x + \sqrt{x^2 + 1})$ est définie sur \mathbb{R} et impaire.

Soit $f:\mathbb{R}\to\mathbb{R}$ une fonction telle que $f\circ f$ soit croissante et $f\circ f\circ f$ soit strictement décroissante. Montrer que fest strictement décroissante.

Pour $x \in]0,1]$, on pose $f(x) = x \mid \frac{1}{x} \mid$.

L'ensemble des fonctions $\mathbb{R} \to \mathbb{R}$ croissantes est-il stable

- 1. Montrer que f est prolongeable par continuité en 0. On note encore f ce prolongement.
- 2. Déterminer les points fixes de f.
- 3. Montrer que $f \circ f = f$.

- ➤ somme?
- ➤ combinaison linéaire?
- ➤ produit?

Reprendre ces questions pour les fonctions monotones.

Allures rapides de courbes

Donner rapidement l'allure de la courbe représentative de $f: x \mapsto \sqrt{2x-3}$.

Donner rapidement l'allure de la courbe représentative de $f: x \mapsto 1 - \operatorname{ch}(2x+1)$.

Donner rapidement l'allure de la courbe représentative de $f: x \mapsto \ln(3-x) - \ln(3)$.

Donner rapidement l'allure de la courbe représentative de $f: x \mapsto \sqrt{2-x}$.

Déterminer également ses points fixes et montrer que [0,2] et [-2,2] sont stables par f.

Dérivabilité globale des fonctions réelles

Expliciter la dérivée de $f: x \mapsto \frac{3x-4}{(2x+1)^2}$

Expliciter la dérivée de $f: x \mapsto \frac{\sqrt{x}}{(x^2 + 3x)^2}$

Expliciter la dérivée de $f: x \mapsto \frac{e^x}{e^x}$

Expliciter la dérivée de $f: x \mapsto (x^2 + 3) e^{x^3 + 2}$

16 ☆☆☆

Expliciter la dérivée de $f: x \mapsto \sqrt{2x^2 - 5x + 7}$.

Expliciter la dérivée de $f: x \mapsto \sqrt{x + \frac{1}{x}}$

Expliciter la dérivée de $f: x \mapsto (2x^3 + 3x^2)^4$.

__ 19 ☆☆☆ ♥

Expliciter la dérivée de $f: x \mapsto \sqrt{(x^2+3)e^{x+5}}$.

20 ☆☆☆

Expliciter la dérivée de $f: x \mapsto \ln(1 + e^x)$.

21 ☆☆☆

Expliciter la dérivée de $f: x \mapsto \ln (\ln(x) + x^2 e^x)$.

 $^{\circ}$

Soit $n \in \mathbb{N}$. Expliciter la dérivée de \ln^n .

*** $\mathbf{23}$

Soit $n \in \mathbb{N}$. Expliciter la dérivée de $x \mapsto 5^{1/x^n}$.

24 ☆☆☆

Expliciter la dérivée de $x \mapsto \ln(\cos(\sqrt{x}) + \ln^8(e+x))$.

Expliciter la dérivée de $f: x \mapsto \left(-\frac{2}{x} + 1\right)(x^2 + 3)$.

Expliciter la dérivée de $f: x \mapsto \frac{1}{(2x-3)^4}$

Expliciter la dérivée de $f: x \mapsto \ln(x^2 + 1)$.

28 ☆☆☆

Expliciter la dérivée de $f: x \mapsto \cos(x^2 + 3)$.

35

 $\star \Leftrightarrow \Leftrightarrow$

Domaine de définition, de continuité, de dérivabilité et expression de la dérivée de $f: x \mapsto \ln|\operatorname{th}(x)|$.

Soit $t \in \mathbb{R}$. Justifier que la fonction $x \mapsto \left(e^{x^2} + \cos(x)\right)^t$ est définie et dérivable sur \mathbb{R} et expliciter sa dérivée.

Domaine de définition, de continuité, de dérivabilité et expression de la dérivée de $f: x \mapsto \frac{\pi^{\ln(3-x^2)}}{(\ln(3-x^2))^{\pi}}$

★☆☆

On pose $f: x \mapsto \ln\left(3x + \frac{2}{x}\right)$.

- 1. Donner le domaine de définition \mathcal{D} de f.
- 2. Étudier la dérivabilité et les variations de f.
- 3. Représenter graphiquement f.

★★☆

On considère la fonction $f: x \mapsto \frac{e^x - 1}{x e^x + 1}$.

- 1. Déterminer le domaine de définition \mathcal{D} de f.
- 2. Étudier la dérivabilité de f sur \mathcal{D} .
- 3. Montrer que l'équation $e^x = x + 2$ admet deux solutions : a > 0 et b < 0.
- 4. Dresser le tableau de variations complet de f et donner une représentation graphique de f.

34***

Calculer la dérivée n-ème de $x \mapsto x^2 e^x$. Calculer la dérivée n-ème de $x \mapsto x e^x$.

Justifier que la fonction $x \mapsto \frac{1}{1+x}$ est \mathscr{C}^{∞} sur $\mathbb{R} \setminus \{-1\}$ et expliciter sa dérivée n-ème pour tout $n \in \mathbb{N}$.

Complément avec une étude ponctuelle simple

Domaine de définition, de continuité, de dérivabilité et expression de la dérivée de $f: x \mapsto \sqrt{\ln(x)}$.

38 $\bigstar \mathring{x} \mathring{x}$

Domaine de définition, de continuité, de dérivabilité et expression de la dérivée de $f: x \mapsto (5 - \sqrt{x})^3$.

39 ★☆☆

Domaine de définition, de continuité, de dérivabilité et expression de la dérivée de $f: x \mapsto \frac{x\sqrt{x}}{x^2+3}$

Domaine de définition, de continuité, de dérivabilité et expression de la dérivée de $f: x \mapsto e^{\sqrt{3x+1}}$.

Domaine de définition, de continuité, de dérivabilité et expression de la dérivée de $f: x \mapsto 2x (\cos(\sqrt{x}))^2$.

Convexité

Montrer que la fonction $x \mapsto \ln(x) e^x$ admet un unique point d'inflexion. Convexité de $x \mapsto x^x$ définie sur \mathbb{R}^{+*} .

Calcul de dérivées partielles

Calculer les dérivées partielles de $f:(x,y)\mapsto \operatorname{ch}(x+y)$.

Calculer les dérivées partielles de $f:(x,y)\mapsto x^y$ sur $\mathbb{R}^{+*}\times\mathbb{R}$.

Calculer les dérivées partielles de $f:(x,y)\mapsto \frac{\sin\left(x+\frac{\pi}{5}\right)\mathrm{e}^{xy}}{1+x^2+y^2}$.

Calculer les dérivées partielles de $f:(x,y)\mapsto \frac{x+\mathrm{e}^{\sqrt{y}}}{1+x^2y^3}+y$ sur $\mathbb{R}\times\mathbb{R}^{+*}$.

Applications de la dérivabilité des fonctions réelles

Montrer: $\forall x \in \mathbb{R}, \operatorname{ch}(x) \geqslant 1 + \frac{x^2}{2}$. Montrer que, pour tout $x \in \mathbb{R}$, $|\operatorname{th}(x)| \geqslant$

Montrer que, pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}^+$, $e^x \geqslant \sum_{k=0}^n \frac{x^k}{k!}$.

TVI strictement monotone

51 ☆☆☆ ❷

Résoudre l'équation d'inconnue $x \in \mathbb{R}$: $2^x + 3^x = 5$.

52 ☆☆☆ ♥

On définit la fonction f sur \mathbb{R}^+ en posant $f(x) = \frac{x\sqrt{x} - 1}{1 + \sqrt{x}}$.

Montrer que f est bijective de \mathbb{R}^+ sur un intervalle à préciser.

53 ★☆☆ ⊗ ♥

Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ une application. On suppose que : $\forall x \in \mathbb{R}^+$, $f(x) e^{f(x)} = x$. Étudier les variations de f.

Considérons la fonction f définie par : $\forall x \in \mathbb{R}, \ f(x) = x + \frac{1}{e^x + 1}$.

Montrer que f est bijective de \mathbb{R} dans \mathbb{R} . Justifier que f^{-1} est dérivable en $\frac{1}{2}$ et calculer $(f^{-1})'\left(\frac{1}{2}\right)$.

Fonctions usuelles

55 ★☆☆

Domaine de définition, de continuité, de dérivabilité, expression de la dérivée et représentation graphique de $x\mapsto 3^{\frac{1}{x}}$.

56 ★★☆ ♡

- 1. Montrer que sh : $\mathbb{R} \to \mathbb{R}$ est bijective et déterminer une écriture explicite de sa bijection réciproque que l'on note Argsh.
- 2. Justifier que Argsh est impaire, dérivable sur $\mathbb R$ et donner une écriture explicite de sa dérivée par deux méthodes.

57 ☆☆☆ *8*₺

Soient $a, b \in \mathbb{R}$. Montrer: $\operatorname{ch}(a+b) = \operatorname{ch}(a)\operatorname{ch}(b) + \operatorname{sh}(a)\operatorname{sh}(b)$ et $\operatorname{sh}(a+b) = \operatorname{sh}(a)\operatorname{ch}(b) + \operatorname{ch}(a)\operatorname{sh}(b)$.

Indications

- 1 indication) Quantité conjuguée.
- **3** indication Raisonner par l'absurde.
- **4 indication**) 1. Encadrer f(x). 3. Disjonction de cas.
- **29 indication**) Dérivabilité de $x \mapsto \ln |x|$?
- 33 indication Étudier $x \mapsto x e^x + 1$ pour appréhender les valeurs prises par cette fonction.
- 43 indication) Redériver pour trouver le signe de f''...
- **49 indication**) Se ramener sur \mathbb{R}^+ et choisir judicieusement la fonction à étudier.
- **50 indication** Récurrence. Dans l'hérédité, prouver l'inégalité par étude de fonction.
- **51** indication) Justifier qu'il n'y a qu'une solution.
- **53** indication Poser $\varphi : x \mapsto x e^x$.
- **56 indication**) Résoudre $y = \operatorname{sh}(x)$ et poser $X = e^x$.

Solutions

- ightharpoonup Pour tout $x \in \mathbb{R}$, $x^2 + 1 > x^2$, donc $\sqrt{x^2 + 1} > \sqrt{x^2} = |x| \geqslant -x$, donc $x + \sqrt{x^2 + 1} > 0$ ce qui entraîne que f est définie sur \mathbb{R} .
 - \triangleright Pour tout $x \in \mathbb{R}$:

$$f(-x) = \ln\left(\sqrt{x^2 + 1} - x\right)$$

$$= -\ln\left(\frac{1}{\sqrt{x^2 + 1} - x}\right)$$

$$= -\ln\left(\frac{\sqrt{x^2 + 1} + x}{(\sqrt{x^2 + 1} - x)(\sqrt{x^2 + 1} + x)}\right)$$

$$= -\ln\left(\sqrt{x^2 + 1} + x\right)$$

$$= -f(x).$$

Donc f est impaire.

2 - solution Soit
$$x \in \mathbb{R}$$
. $f(x+n) = \left\lfloor \frac{x+n}{n} \right\rfloor - \frac{\lfloor x+n \rfloor}{n} = \left\lfloor \frac{x}{n} + 1 \right\rfloor - \frac{\lfloor x \rfloor + n}{n} = \left\lfloor \frac{x}{n} \right\rfloor - \frac{\lfloor x \rfloor}{n} = f(x)$.

- **3 solution** Soient $a, b \in \mathbb{R}$ tels que a < b. Par l'absurde, supposons $f(a) \leqslant f(b)$. Notons A = f(a) et B = f(b). Par hypothèses, on a donc :

 - $ightharpoonup f\circ f(A)>f\circ f(B)$ car $f\circ f\circ f$ est strictement décroissante.

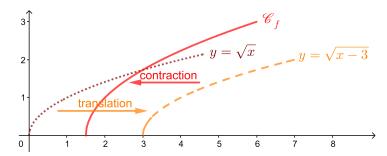
Ces deux points contredisent la croissance supposée de $f \circ f$. C'est donc que f(a) > f(b). On a ainsi montré que f est strictement décroissante.

- 4 solution 1. Notons $n = \lfloor \frac{1}{x} \rfloor$. On a $n \leqslant \frac{1}{x} < n+1$ donc $\frac{1}{n+1} < x \leqslant \frac{1}{n}$ et $\frac{n}{n+1} < f(x) \leqslant 1$. De plus, si $x \to 0^+$, $\frac{1}{x} \to +\infty$ donc $n = \lfloor \frac{1}{x} \rfloor \to +\infty$ et ainsi $\frac{n}{n+1} \to 1$. D'après le théorème des gendarmes, $f(x) \xrightarrow[x \to 0]{} 1$, donc f est prolongeable par continuité en 0 en posant f(0) = 1.
 - 2. 0 n'est pas un point fixe. Soit $x \in]0,1]: f(x) = x \iff \left\lfloor \frac{1}{x} \right\rfloor = 1 \iff 1 \leqslant \frac{1}{x} < 2 \iff \frac{1}{2} < x \leqslant 1$. Bref, l'ensemble des points fixes de f est $\left[\frac{1}{2},1\right]$.
 - 3. Notons que dans la question 1, on a montré que f est à valeurs dans [0,1] ce qui permet de donner un sens à la composée $f \circ f$.
 - $f \circ f(0) = f(1) = 1 = f(0).$
 - ightharpoonup D'après la question 2, si $x \in \left[\frac{1}{2},1\right]$, f(x) = x donc $f \circ f(x) = f(x)$.
 - Soit $x \in \left]0, \frac{1}{2}\right]$. Notons encore $n = \left\lfloor \frac{1}{x} \right\rfloor : \frac{1}{x} \geqslant 2$, donc $n \geqslant 2$, donc $\frac{n}{n+1} \geqslant \frac{1}{2}$ (car, par exemple, $2n \geqslant n+1$). Ainsi, $f(x) \geqslant \frac{n}{n+1} \geqslant \frac{1}{2}$, et d'après la question 2, f(f(x)) = f(x).

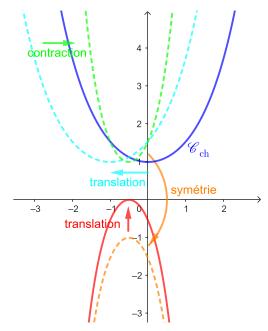
En résumé, pour tout $x \in [0,1]$, $f \circ f(x) = f(x)$ donc $f \circ f = f$.

- 5 solution > Cas des fonctions croissantes.
 - ♦ Somme : oui, cours.
 - \diamond Combinaison linéaire : non, par exemple $\mathrm{Id}_{\mathbb{R}}$ est croissante mais pas $(-1) \times \mathrm{Id}_{\mathbb{R}}$.
 - ❖ Produit : non, cours.
 - > Cas des fonctions monotones.
 - \Rightarrow Somme: non, par exemple exp et $-\operatorname{Id}_{\mathbb{R}}$ sont monotones, mais pas leur somme.
 - ♦ Combinaison linéaire : a fortiori, non...
 - \Rightarrow Produit : non, par exemple exp et $\mathrm{Id}_{\mathbb{R}}$ sont monotones, mais pas leur produit.

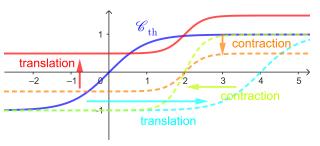
(6 - solution) On part du graphe de $x\mapsto \sqrt{x}$ pour obtenir celui de $x\mapsto \sqrt{x-3}$ par translation de vecteur $3\overrightarrow{i}$ et enfin celui de $x \mapsto \sqrt{2x-3}$ par contraction horizontale de rapport 2.



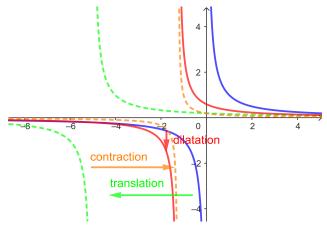
7 - solution De proche en proche, on part de la courbe représentative de ch (en bleu) pour aboutir à la courbe de la fonction souhaitée (en rouge).



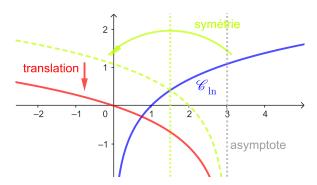
8 - solution De proche en proche, on part de la courbe représentative de th (en bleu) pour aboutir à la courbe de la fonction souhaitée (en rouge).



(9 - solution) De proche en proche, on part de la courbe représentative de la fonction inverse (en bleu) pour aboutir à la courbe de la fonction souhaitée (en rouge).



(10 - solution) De proche en proche, on part de la courbe représentative de ln (en bleu) pour aboutir à la courbe de la fonction souhaitée (en rouge).



11 - solution Allure de la courbe. La courbe souhaitée (en rouge) est obtenue par symétrie d'axe $x = \frac{2}{2}$ à partir de la courbe représentative de la fonction racine carrée (en bleu).



Étude des points fixes. Soit $x \in]-\infty,2]$. On résout : $\sqrt{2-x}=x \iff x=1$. Un seul point fixe : 1. Stabilité de [0,2]. Par lecture graphique (et continuité de f), $f([0,2])=[0,\sqrt{2}]\subset [0,2]$, donc [0,2] est stable par f. De même, $f([-2,2])=[0,2]\subset [0,2]$ donc [-2,2] est stable par f.

12 - **solution** f est dérivable sur $\mathcal{D} = \mathbb{R} \setminus \{\{-\frac{1}{2}\} \text{ et } \forall x \in \mathcal{D}, f'(x) = \frac{19-6x}{(2x+1)^3}$

13 - solution) f est dérivable sur $\mathcal{D} = \mathbb{R}^{+*}$ et $\forall x \in \mathcal{D}, f'(x) = -\frac{(9+7x)\sqrt{x}}{2x^3(3+x)^3}$

14 - solution f est dérivable sur $\mathcal{D} = \mathbb{R}^*$ et $\forall x \in \mathcal{D}, f'(x) = \frac{(x-1)e^x}{x^2}$

15 - solution f est dérivable sur $\mathcal{D} = \mathbb{R}$ et $\forall x \in \mathcal{D}, f'(x) = x(3x^3 + 9x + 2) e^{x^3 + 2}$.

16 - solution f est dérivable sur $\mathcal{D} = \mathbb{R}$ car le polynôme entrant en jeu dans la définition de f est strictement positif sur \mathbb{R} (discriminant strictement positif) et $\forall x \in \mathcal{D}, f'(x) = \frac{4x-5}{2\sqrt{2x^2-5x+7}}$.

17 - solution f est dérivable sur $\mathcal{D} = \mathbb{R}^{+*}$ et $\forall x \in \mathcal{D}, f'(x) = \frac{x^2 - 1}{2x^2 \sqrt{x + \frac{1}{x}}}$

18 - solution f est dérivable sur $\mathcal{D} = \mathbb{R}$ et $\forall x \in \mathcal{D}, f'(x) = 24x^7(x+1)(2x+3)^3$.

19 - solution f est dérivable sur $\mathcal{D} = \mathbb{R}$ et $\forall x \in \mathcal{D}, f'(x) = \frac{(x^2 + 2x + 3) e^{x + 5}}{2\sqrt{(x^2 + 3) e^{x + 5}}}$.

20 - solution f est dérivable sur $\mathcal{D} = \mathbb{R}$ et $\forall x \in \mathcal{D}, f'(x) = \frac{e^x}{1+e^x}$.

21 - solution) f est dérivable sur $\mathcal{D} = \mathbb{R}^{+*}$ et $\forall x \in \mathcal{D}, f'(x) = \frac{1 + (x+2)x^2 e^x}{x(\ln(x) + x^2 e^x)}$

22 - solution Soit $f = \ln^n$. f est dérivable sur \mathbb{R}^{+*} et $\forall x \in \mathbb{R}^{+*}$, $f'(x) = \frac{n}{x} \ln^{n-1}(x)$.

23 - solution Soit $f(x) = 5^{1/x^n} = \exp(x^{-n} \ln(5))$. f est définie et dérivable (en tant que composée de fonctions dérivables) sur \mathbb{R} et $\forall x \in \mathbb{R}$, $f'(x) = -n \ln(5)x^{-n-1} \exp\left(\frac{1}{x^n} \ln(5)\right) = -\frac{n \ln(5)}{x^{n+1}} 5^{1/x^n}$.

24 - solution $f: x \mapsto \ln(\cos(\sqrt{x}) + \ln^8(e+x))$ est définie et dérivable sur \mathbb{R}^{+*} . Et $\forall x \in \mathbb{R}^{+*}$, $f'(x) = \frac{1}{\cos(\sqrt{x}) + \ln^8(e+x)} \left(\frac{8 \ln^7(e+x)}{e+x} - \frac{\sin(\sqrt{x})}{2\sqrt{x}} \right)$.

25 - solution f est définie sur \mathbb{R}^* , dérivable sur \mathbb{R}^* par opérations algébriques, et $\forall x \in \mathbb{R}^*$, $f(x) = -2 + 2x + \frac{6}{x^2}$.

26 - solution) f est définie et dérivable sur $\mathbb{R} \setminus \left\{\frac{3}{2}\right\}$ en tant qu'inverse d'une fonction dérivable qui ne s'annule jamais, et $\forall x \in \mathbb{R} \setminus \left\{\frac{3}{2}\right\}$, $f'(x) = -\frac{8}{(2x-3)^5}$.

27 - solution f est définie et dérivable sur \mathbb{R} par composition de la fonction $x \mapsto x^2 + 1$ qui est dérivable sur \mathbb{R} et toujours strictement positive, et de la fonction ln qui est dérivable sur \mathbb{R}^{+*} . Et $\forall x \in \mathbb{R}, f'(x) = \frac{2x}{x^2 + 1}$.

28 - solution La fonction f est définie et dérivable sur \mathbb{R} en tant que composée de deux fonctions dérivables sur \mathbb{R} et :

$$\forall x \in \mathbb{R}, \ f'(x) = -2x\sin(x^2 + 3).$$

29 - solution) f est définie et dérivable sur \mathbb{R}^* par composition de th, dérivable sur \mathbb{R}^* et à valeurs dans \mathbb{R}^* , par $x \mapsto \ln |x|$, qui est dérivable sur \mathbb{R}^* de dérivée $x \mapsto \frac{1}{x}$. Et $\forall x \in \mathbb{R}^*$, $f'(x) = \frac{1/\cosh^2(x)}{\sinh(x)} = \frac{1}{\sinh(x)\cosh(x)} = \frac{1}{\sinh(x)\cosh(x)}$.

30 - **solution** $\forall x \in \mathbb{R}^*, \ e^x > 1 \ \text{et} \ \cos(x) \geqslant -1, \ \text{donc} \ e^x + \cos(x) > 0.$ De plus, $e^0 + \cos(0) = 2 > 0.$ Ainsi, la fonction $f: x \mapsto \left(e^{x^2} + \cos(x)\right)^t = \exp\left(t\ln\left(e^{x^2} + \cos(x)\right)\right)$ est bien définie et dérivable par opérations algébriques et compositions. Puis, pour $x \in \mathbb{R}, \ f'(x) = t\left(2x\,e^{x^2} - \sin(x)\right)\left(e^{x^2} + \cos(x)\right)^{t-1}$.

32 - solution 1. Soit $x \in \mathbb{R}$. f(x) existe $\iff 3x + \frac{2}{x} > 0 \iff \frac{3x^2 + 2}{x} > 0$. Le numérateur étant toujours strictement positif, on a $\mathcal{D} = \mathbb{R}^{+*}$.

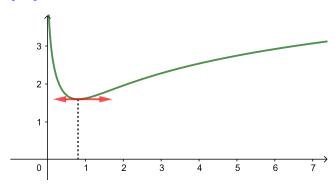
2. Par opérations algébriques et composition, f est indéfiniment dérivable sur \mathcal{D} .

Et
$$\forall x \in \mathcal{D}, f'(x) = \frac{3 - \frac{2}{x^2}}{3x + \frac{2}{x}} = \frac{3x^2 - 2}{x(3x^2 + 2)} = \frac{3\left(x + \sqrt{\frac{2}{3}}\right)}{x(3x^2 + 2)} \left(x - \sqrt{\frac{2}{3}}\right).$$

Cette dernière fraction est positive, de sorte que f'(x) est du signe de $x - \sqrt{\frac{2}{3}}$.

f est strictement décroissante sur $\left[0,\sqrt{\frac{2}{3}}\right]$ et strictement croissante sur $\left[\sqrt{\frac{2}{3}},+\infty\right[$

3. Voici une représentation graphique



33 - solution

1. L'équation $x e^x + 1 = 0$ n'est pas simple à résoudre...

Étude de fonction

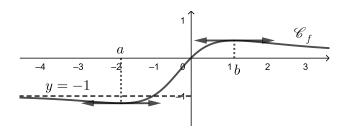
Posons $\varphi: x \mapsto x \, \mathrm{e}^x + 1$. Par opérations algébriques, φ est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $\varphi'(x) = (x+1) \, \mathrm{e}^x$, qui est du signe de x+1. Ainsi, φ est décroissante sur $]-\infty,-1]$ puis croissante sur $[1,+\infty[$. Comme $\varphi(-1)=1-\mathrm{e}^{-1}>0$, on en déduit que φ est de signe constant strictement positif sur \mathbb{R} . De fait, f est définie sur $\mathcal{D}=\mathbb{R}$.

2. Par opérations algébriques, f est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $f'(x) = \frac{e^x}{(x e^x + 1)^2}(x + 2 - e^x)$.

- 3. Posons $\psi: x \mapsto x + 2 e^x$. ψ est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $\psi'(x) = 1 e^x$. ψ est donc strictement croissante sur \mathbb{R}^- et strictement décroissante sur \mathbb{R}^+ . De plus, $\psi(0) = 1 \neq 0$ et $\psi(x) \xrightarrow{\pi} -\infty$.
 - ightharpoonup D'après le théorème des valeurs intermédiaires strictement monotone sur $\mathbb{R}^-,~\psi:\mathbb{R}^{-*}\to]-\infty,-1[$ est bijective. Autrement dit, l'équation $e^x = x + 2$ admet une unique solution a dans \mathbb{R}^{-*} .
 - \triangleright De même sur \mathbb{R}^{+*} ... D'où b.
- 4. On en déduit le tableau de variations de f:

x	$-\infty$	a		b		$+\infty$
f'	_	0	+	0	_	
f	-1	f(a)		f(b)		0

Le graphe:



34 - solution Récurrence : $\frac{d^n x e^x}{dx} = (x+n) e^x$.

35 - solution Récurrence : $\frac{d^n x^2 e^x}{dx} = (x^2 + 2nx + n(n-1)) e^x$

36 - **solution** En tant qu'inverse d'une fonction \mathscr{C}^{∞} ne s'annulant jamais, f est \mathscr{C}^{∞} sur $\mathbb{R}\setminus\{-1\}$. Par récurrence sur $n: \forall x \in \mathbb{R} \setminus \{-1\}, f^{(n)}(x) = \frac{(-1)^n n!}{(1+x)^{n+1}}$

37 - solution Définie et continue sur $\mathcal{D} = [1, +\infty[$. Dérivable sur $]1, +\infty[$, et $f'(x) = \frac{1}{2x\sqrt{\ln(x)}}$.

Non dérivable en 1 puisque son taux d'accroissement en 1 n'admet pas de limite finie en 1 :

$$T(x) = \frac{f(x) - f(1)}{x - 1} = \frac{1}{\sqrt{x - 1}} \sqrt{\frac{\ln(x)}{x - 1}} \underset{x \to 1^+}{\longrightarrow} +\infty.$$

38 - solution f est définie sur \mathbb{R}^+ . En tant que composée de $x\mapsto 5-\sqrt{x}$, qui est dérivable sur \mathbb{R}^{+*} , et la fonction cube, qui est dérivable sur \mathbb{R} , f est dérivable sur \mathbb{R}^{+*} . Et $\forall x\in\mathbb{R}^{+*}$, $f'(x)=-\frac{3}{2\sqrt{x}}(5-\sqrt{x})^2$. Dérivabilité en 0. f n'est pas dérivable en 0 car son taux d'acrroissement n'admet pas une limite finie en 0 :

$$T(x) = \frac{f(x) - f(0)}{x - 0} = \frac{(5 - \sqrt{x})^3}{x} \xrightarrow[x \to 0^+]{} +\infty.$$

39 - solution f est définie sur \mathbb{R}^+ . En tant que quotient et produit de fonctions dérivables sur \mathbb{R}^{+*} , f_5 est dérivable sur \mathbb{R}^{+*} , de dérivée $f_5': x \mapsto \frac{\sqrt{x}(9-x^2)}{2(x^2+3)^2}$.

Dérivabilité en 0. $T(x) = \frac{f(x) - f(0)}{x - 0} = \frac{\sqrt[3]{x}}{x^2 + 3} \xrightarrow[x \to 0]{} 0$, limite finie, donc f est dérivable en 0 et f'(0) = 0.

Remarque: l'expression générale précédente est donc encore valable pour <math>x=0, ce qui aurait pu être obtenu par le théorème de la limite de la dérivée.

dérivable en $-\frac{1}{3}$.

41 - solution Définie sur \mathbb{R}^+ , dérivable sur \mathbb{R}^{+*} , de dérivée $x \mapsto 2\cos(\sqrt{x})(\cos(\sqrt{x}) - \sqrt{x}\sin(\sqrt{x}))$.

Dérivabilité en 0. $T(x) = \frac{f(x) - f(0)}{x - 0} = 2\cos^2(\sqrt{x}) \xrightarrow[x \to 0]{} 2$, donc f est dérivable en 0 et f'(0) = 2.

Remarque : l'expression générale précédente est donc encore valable pour x=0, ce qui aurait pu être obtenu par le théorème de la limite de la dérivée.

42 - solution Notons que $f(x) = x^x = e^{x \ln(x)}$. Ainsi, f est effectivement définie sur \mathbb{R}^{+*} .

Par opérations algébriques et composition, f est de classe \mathscr{C}^{∞} sur \mathbb{R}^{+*} et, pour $x \in \mathbb{R}^{+*}$, $f'(x) = (1 + \ln(x)) e^{x \ln(x)}$ et $f''(x) = \left(\frac{1}{x} + (1 + \ln(x))^2\right) e^{x \ln(x)}$.

Or, $\forall x \in \mathbb{R}^{+*}, \frac{1}{x} > 0$ et $(1 + \ln(x))^2 \ge 0$, donc $f''(x) \ge 0$. Donc f est convexe.

43 - solution f est \mathscr{C}^{∞} sur \mathbb{R}^{+*} et $\forall x \in \mathbb{R}^{+*}$, $f'(x) = \left(\ln(x) + \frac{1}{x}\right) e^x$, $f''(x) = \left(\ln(x) + \frac{2}{x} - \frac{1}{x^2}\right) e^x$.

Notons $\varphi: x \mapsto \ln(x) + \frac{2}{x} - \frac{1}{x^2}$. φ est dérivable sur \mathbb{R}^{+*} , $\varphi'(x) = \frac{1}{x} - \frac{2}{x^2} + \frac{2}{x^3} = \frac{x^2 - 2x + 2}{x^3} > 0$, donc φ est strictement croissante sur \mathbb{R}^{+*} . $\varphi(x) \xrightarrow[x \to 0]{} -\infty$ par croissances comparées. $\varphi(x) \xrightarrow[x \to +\infty]{} +\infty$. D'après le théorème des valeurs

intermédiaires strictement monotone, φ s'annule une unique fois sur \mathbb{R}^{+*} en changeant de signe, donc f admet un unique point d'inflexion.

44 - **solution** Existence des dérivées partielles sur \mathbb{R}^2 par composition.

Et pour tout $(x, y) \in \mathbb{R}^2$, $\frac{\partial f}{\partial x}(x, y) = \operatorname{sh}(x + y)$.

Par symétrie des rôles de x et y, on peut donner l'autre résultat sans calcul : $\frac{\partial f}{\partial y}(x,y) = \sinh(x+y)$.

45 - solution Notons que $f(x,y) = e^{y \ln(x)}$. Existence des dérivées partielles sur $\mathbb{R}^{+*} \times \mathbb{R}$ par opérations algébriques et composition. Et pour tout $(x,y) \in \mathbb{R}^{+*} \times \mathbb{R}$:

- $\geq \frac{\partial f}{\partial x}(x,y) = yx^{y-1}$
- $\geq \frac{\partial f}{\partial u}(x,y) = \ln(x)x^y.$

46 - **solution** Existence des dérivées partielles sur \mathbb{R}^2 par opérations algébriques. Et pour tout $(x,y) \in \mathbb{R}^2$:

47 - solution Existence des dérivées partielles sur $\mathbb{R} \times \mathbb{R}^{+*}$ par opérations algébriques et composition. Et pour tout $(x,y) \in \mathbb{R} \times \mathbb{R}^{+*}$:

- $ightharpoonup rac{\partial f}{\partial x}(x,y) = rac{\left(1 + x^2 y^3\right) 2xy^3 \left(x + e^{\sqrt{y}}\right)}{\left(1 + x^2 y^3\right)^2}$
- $ightharpoonup rac{\partial f}{\partial y}(x,y) = rac{\frac{\mathrm{e}^{\sqrt{y}}}{2\sqrt{y}}\left(1 + x^2y^3\right) 3x^2y^2\left(x + \mathrm{e}^{\sqrt{y}}\right)}{(1 + x^2y^3)^2} + 1.$

48 - solution) Étude de $x \mapsto \operatorname{ch}(x) - 1 - \frac{x^2}{2}$.

49 - solution) La relation est inchangée si l'on change x en -x, il suffit donc de l'établir sur \mathbb{R}^+ , intervalle sur lequel th est positive. Il suffit donc de prouver que $\forall x \in \mathbb{R}^+$, $\operatorname{th}(x) \geqslant \frac{x}{1+x}$.

On préfère dériver un produit plutôt qu'un quotient...

Pour $x \in \mathbb{R}^+$, on pose $f(x) = (1+x) \operatorname{th}(x) - x$.

 $f ext{ est dérivable sur } \mathbb{R}^+, ext{ et } \forall x \in \mathbb{R}^+, f'(x) = ext{th}(x) + (1+x)(1- ext{th}^2(x)) - 1 = (1- ext{th}(x))[(1+x)(1+ ext{th}(x)) - 1] \geqslant 0.$ Ainsi, f est croissante sur \mathbb{R}^+ , donc $\forall x \in \mathbb{R}^+$, $f(x) \geqslant f(0) = 0$.

On en déduit que $\forall x \in \mathbb{R}^+$, $(1+x) \operatorname{th}(x) \geqslant x$, soit $\operatorname{th}(x) \geqslant \frac{x}{1+x}$.

50 - solution Prouvons, par récurrence sur $n \in \mathbb{N}$, la proposition $\mathcal{P}(n) : \forall x \in \mathbb{R}^+, e^x \geqslant \sum_{k=0}^{n} \frac{x^k}{k!}$.

ightharpoonup Initialisation. Si $x \ge 0$, $e^x \ge 1$ donc $\mathcal{P}(0)$ est établie.

 $ightharpoonup H\acute{e}r\acute{e}dit\acute{e}$. Soit $n \in \mathbb{N}$. On suppose que $\mathcal{P}(n)$ est vraie. Montrons $\mathcal{P}(n+1)$. On note $\varphi: x \mapsto e^x - \sum_{k=0}^{n+1} \frac{x^k}{k!}$. φ est dérivable sur \mathbb{R}^+ par opérations algébriques, et :

$$\forall x \in \mathbb{R}^+, \ \varphi'(x) = e^x - \sum_{k=1}^{n+1} \frac{x^{k-1}}{(k-1)!} = e^x - \sum_{k=0}^n \frac{x^k}{k!}.$$

De fait, par hypothèse de récurrence, $\varphi'(x) \ge 0$ ce qui entraı̂ne que φ est croissante. En conséquence, $\varphi(x) \geqslant \varphi(0) = 0$ et $\mathcal{P}(n+1)$ est prouvée.

D'où le résultat.

51 - solution) 1 est solution évidente.

 $\overline{\text{De plus}, x \mapsto 2^x} + 3^x$ est strictement croissante, donc il y a unicité de la solution.

52 - solution f est dérivable sur \mathbb{R}^{+*} et $\forall x \in \mathbb{R}^{+*}$, $f'(x) = \frac{3x + 2x\sqrt{x} + 1}{2\sqrt{x}(1 + \sqrt{x})^2} > 0$. Ainsi, f est continue et strictement croissante sur \mathbb{R}^+ . De plus, f(0) = -1 et $f(x) \underset{x \to +\infty}{\longrightarrow} +\infty$. Donc, d'après le théorème de la bijection, f réalise une bijection de \mathbb{R}^+ dans $[-1; +\infty[$.

53 - solution Pour tout $x \in \mathbb{R}^+$, on pose $\varphi(x) = x e^x$. φ est continue et strictement croissante sur \mathbb{R}^+ , $\varphi(0) = 0$ $\overline{\operatorname{et} \varphi(x)} \xrightarrow[x \to +\infty]{} + \infty$, de sorte que, d'après le théorème des valeurs intermédiaires strictement monotone, $\varphi: \mathbb{R}^+ \to \mathbb{R}^+$ est bijective.

De fait : $\forall x \in \mathbb{R}^+$, $f(x) e^{f(x)} = x \iff \varphi \circ f = \mathrm{Id}_{\mathbb{R}^+} \iff f = \varphi^{-1}$. Comme φ est strictement croissante, il en est de même de $f=\varphi^{-1}$

54 - solution f est continue strictement croissante sur \mathbb{R} ; $f(x) \underset{x \to -\infty}{\longrightarrow} -\infty$ et $f(x) \underset{x \to +\infty}{\longrightarrow} +\infty$.

D'après le théorème de la bijection, f est bijective de \mathbb{R} dans \mathbb{R} . On observe $f(0) = \frac{1}{2}$, donc $f^{-1}\left(\frac{1}{2}\right) = 0$. f'(0) > 0 donc f^{-1} est dérivable en $\frac{1}{2}$ ett $(f^{-1})'\left(\frac{1}{2}\right) = \frac{1}{f'(0)} = \frac{4}{3}$.

55 - solution $f(x) = 3^{\frac{1}{x}} = e^{\frac{1}{x}\ln(3)}$, définie pour $x \in \mathbb{R}^*$. Par composition de fonctions usuelles dérivables, f est dérivable sur \mathbb{R}^* et $\forall x \in \mathbb{R}^*$, $f'(x) = -\frac{\ln(3)}{x^2} 3^{\frac{1}{x}} < 0$.

Quand $x \to \pm \infty$, $\frac{1}{x} \to 0$ donc, par composition, $f(x) \to 1$. Quand $x \to 0^+$, $\frac{1}{x} \to +\infty$ donc $f(x) \to +\infty$; et quand $x \to 0^-$, $\frac{1}{x} \to -\infty$ donc $f(x) \to 0$. f n'a donc pas de limite en 0, mais sa courbe représentative possède tout de même une asymptote verticale d'équation x = 0 (quand x tend vers 0, par valeurs supérieures).

D'où le tableau de variations :

x	$-\infty$	$0 + \infty$
f'(x)	_	_
f	1 0	$+\infty$ 1

Comme la limite de f en 0^- est finie, égale à 0, on peut encore s'intéresser à l'éventuelle demi-tangente en 0^- . Pour cela, on observe le taux d'accroissement de f en 0^- , avec la valeur 0 jouant le rôle de « f(0) »:

$$T(x) = \frac{f(x) - 0}{x - 0}$$

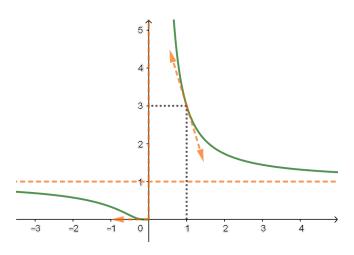
$$= \frac{f(x)}{x}$$

$$= -\frac{e^{-\frac{\ln(3)}{t}}}{t} \text{ en posant } t = -x,$$

$$= -e^{-\frac{\ln(3)}{t} - \ln(t)} \text{ car, comme } t \xrightarrow[x \to 0^{-}]{} 0^{+}, \text{ on peut écrire } t = e^{\ln(t)}.$$

On écrit $-\frac{\ln(3)}{t} - \ln(t) = -\frac{\ln(3)}{t} \left(1 + \frac{t \ln(t)}{\ln(3)}\right)$. Par croissances comparées, $t \ln(t) \underset{t \to 0^+}{\longrightarrow} 0$, donc par addition et multiplication, $-\frac{\ln(3)}{t} - \ln(t) \xrightarrow[t \to 0^+]{} -\infty$ et, par composition par la fonction exponentielle, $T(x) \to 0$.

Ainsi, la courbe représentative de f admet une demi-tangente horizontale en 0^- .



56 - solution) 1. Soit $y \in \mathbb{R}$. On résout $(E): y = \operatorname{sh}(x)$. Idée: poser $X = e^x$. $(E) \iff e^x - e^{-x} = 2y \iff X^2 - 2yX - 1 = 0.$

Cette équation du second degré admet pour discriminant $\Delta = 4(y^2 + 1) > 0$, elle a donc deux solutions : $y \pm \sqrt{y^2 + 1}$.

Ainsi, $(E) \iff e^x = y \pm \sqrt{y^2 + 1}$.

Or, $y^2+1>y^2$, donc $\sqrt{y^2+1}>\sqrt{y^2}=|y|\geqslant \pm y$ ce qui entraı̂ne que :

 $> y - \sqrt{y^2 + 1} < 0$: on l'exclut.

 $> y + \sqrt{y^2 + 1} > 0.$

Pour finir : $(E) \iff x = \ln\left(y + \sqrt{y^2 + 1}\right)$. Indépendamment de la valeur de $y \in \mathbb{R}$, on trouve toujours une unique solution, on en conclut que sh : $\mathbb{R} \to \mathbb{R}$ est bijective et $\forall y \in \mathbb{R}$, $\operatorname{Argsh}(y) = \ln\left(y + \sqrt{1 + y^2}\right)$.

Remarque : en ayant appliqué au début le théorème des valeurs intermédiaires strictement monotone, on aurait pu affirmer d'entrée que sh est bijective. Et on aurait ainsi pu se passer de vérifier que $y + \sqrt{y^2 + 1}$ est > 0. Cela ne nous a pas posé problème ici, mais dans d'autres exercices, cela pourrait s'avérer utile.

- 2. En tant que bijection réciproque d'une fonction impaire, dérivable et dont la dérivée ne s'annule jamais sur R, Argsh est impaire et dérivable sur \mathbb{R} . Calculons Argsh'.
 - > Méthode 1. Calcul direct à partir de l'expression explicite obtenue à la question 1.
 - Methode 1. Calcul direct a partin de l'expression $\operatorname{Car}_{x}(x) = \frac{1+\frac{x}{x}}{x+\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+1}}$.

 Méthode 2. Calcul à partir de l'expression explicite de la dérivabilité d'une bijection réciproque. $\forall x \in \mathbb{R}$, $\operatorname{Argsh}'(x) = \frac{1}{\operatorname{sh}'(\operatorname{Argsh}(x))} = \frac{1}{\operatorname{ch}(\operatorname{Argsh}(x))} = \frac{1}{\sqrt{\operatorname{ch}(\operatorname{Argsh}(x))^2}} = \frac{1}{\sqrt{1+\operatorname{sh}(\operatorname{Argsh}(x))^2}} = \frac{1}{\sqrt{1+\operatorname{sh}(\operatorname$

Remarque : on peut aussi justifier l'imparité à partir de l'expression explicite obtenue à la question précédente, mais c'est paradoxalement moins simple...

57 - solution Développer le membre de droite, c'est élémentaire.