EXERCICE 1

- 1. (u_n) définie $\iff \forall n \in \mathbb{N}, \cos\left(\frac{a}{2^n}\right) > 0 \iff \forall n \in \mathbb{N}, \frac{a}{2^n} \in A = \bigcup_{k \in \mathbb{Z}} A_k$ en posant $A_k = \left] -\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi \right[$.
 - ightharpoonup Si $a \in A_0$, on a clairement $\forall n \in \mathbb{N}, \frac{a}{2^n} \in A_0 \subset A$ et (u_n) est bien définie.
 - Soit $a \in \mathbb{R} \setminus A_0$. $\frac{a}{2^n} \underset{n \to +\infty}{\longrightarrow} 0$ donc la suite $\left(\frac{a}{2^n}\right)$ est à valeurs dans A_0 à partir d'un certain rang. Donc il existe $N \in \mathbb{N}$ tel que $x = \frac{a}{2^N} \in A_0$ et $y = \frac{a}{2^{N-1}} \notin A_0$. Or, $y = 2x \in]-\pi, \pi[$. C'est donc que $\frac{a}{2^{N-1}} \in]-\pi, \pi[\setminus A_0 =]-\pi, -\frac{\pi}{2}] \cup \left[\frac{\pi}{2}, \pi[$, ce qui entraı̂ne que $\ln\left(\cos\left(\frac{a}{2^{N-1}}\right)\right) \leqslant 0$ et u_{N-1} n'est pas définidenc u n'est pas définie.

En conséquence, (u_n) est définie **ssi** $a \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

2. Comme $\frac{a}{2^n} \underset{n \to +\infty}{\longrightarrow} 0$, on peut utiliser les développements limités :

$$ightharpoonup \cos\left(\frac{a}{2^n}\right) \underset{n \to +\infty}{=} 1 - \frac{a^2}{2 \cdot 2^{2n}} + o\left(\frac{1}{2^{2n}}\right);$$

$$ightharpoonup \ln\left(\cos\left(\frac{a}{2^n}\right)\right) \underset{n\to+\infty}{=} -\frac{a^2}{2\cdot 2^{2n}} + o\left(\frac{1}{2^{2n}}\right).$$

Ainsi,
$$u_n \underset{n \to +\infty}{\sim} -\frac{a^2}{2} \left(\frac{1}{4}\right)^n$$
.

Or, $\sum {\left(\frac{1}{4}\right)}^n$ converge en tant que série géométrique avec $\left|\frac{1}{4}\right| < 1$. Par linéarité et critère de comparaison de séries à termes négatifs, on en conclut que $\sum u_n$ diverge.

3. Si a = 0, $u_n = 0$ donc $\sum_{n=0}^{+\infty} v_n = 0$.

Supposons $a \neq 0$. Alors $\cos(x) = \frac{\sin(2x)}{2\sin(x)}$ de sorte que :

$$u_n = \ln\left(\sin\left(\frac{a}{2^{n-1}}\right)\right) - \ln\left(\sin\left(\frac{a}{2^n}\right)\right) - \ln(2).$$

On observe un télescopage, en notant S_N la somme partielle de rang $N \in \mathbb{N}$:

$$S_N = \sum_{n=0}^N u_n$$

$$= \sum_{n=0}^N \left(\ln\left(\sin\frac{a}{2^{n-1}}\right) - \ln\left(\sin\frac{a}{2^n}\right) \right) - \sum_{n=0}^N \ln(2)$$

$$= \ln(\sin(2a)) - \ln\left(\sin\left(\frac{a}{2^N}\right)\right) - (N+1)\ln(2)$$

$$= \ln\left(\frac{\sin(2a)}{2^{N+1}\sin\left(\frac{a}{2^N}\right)}\right).$$

Or, $\sin\left(\frac{a}{2^N}\right) \underset{N \to +\infty}{\sim} \frac{a}{2^N}$, donc $\frac{\sin(2a)}{2^{N+1}\sin\left(\frac{a}{2^N}\right)} \underset{N \to +\infty}{\sim} \frac{\sin(2a)}{2a} \underset{N \to +\infty}{\longrightarrow} \frac{\sin(2a)}{2a}$.

Par composition de limite, $S_N \underset{N \to +\infty}{\longrightarrow} \ln\left(\frac{\sin(2a)}{2a}\right)$ et finalement, $\sum_{n=0}^{+\infty} u_n = \ln\left(\frac{\sin 2a}{2a}\right)$.

EXERCICE 2

I.1

On vérifie que (.|.) est une forme bilinéaire symétrique (grâce à la commutativité et la bilinéarité de \times dans \mathbb{R} , et à la linéarité de l'évaluation et de la somme). De plus, (.|.) est :

- ightharpoonup positive car $\forall P \in \mathbb{R}_p[X], (P|P) = \sum_{k=0}^n P(2k-1)^2 \geqslant 0;$
- ightharpoonup définie. En effet, si $P \in \mathbb{R}_p[X]: (P|P) = 0 \implies \sum_{k=0}^p P(2k-1)^2 = 0 \implies \forall k \in \llbracket 0\,, n \rrbracket\,, \ P(2k-1) = 0.$ Les nombres 2k-1, pour $k \in \llbracket 0\,, p \rrbracket$, sont tous distincts donc P admet p+1 racines; comme P est de degré au plus p, c'est que P est le polynôme nul.

On a ainsi validé tous les axiomes permettant de dire que (.|.) est un produit scalaire].

I.2

On vérifie que la famille (1, X) est orthonormée :

- $> (1|1) = \frac{1}{2}(1^2 + 1^2) = 1;$
- $> (X|X) = \frac{1}{2}(1^2 + (-1)^2) = 1;$
- $> (1|X) = \frac{1}{2}(1^2 + 1(-1)) = 0$

A fortiori, elle est libre. Formée de 2 vecteurs de E qui est de dimension 2, (1, X) est une base orthonormée de E

Dès lors que (1, X) est une base orthonormée de E, (1, X) vérifie (\mathcal{N}) d'après le cours.

I.3.a

Par bilinéarité, $(P|J) = \frac{1}{\sqrt{2}}(P|X) - \frac{1}{\sqrt{6}}(P|1)$ donc :

$$(P|J)^2 = \frac{1}{2} \left((P|X) - \frac{1}{\sqrt{3}} (P|1) \right)^2 = \frac{1}{2} \left((P|X)^2 - \frac{2}{\sqrt{3}} (P|X) (P|1) + \frac{1}{3} (P|1)^2 \right).$$

De la même manière, $(P|K)^2 = \frac{1}{2} \left((P|X)^2 + \frac{2}{\sqrt{3}} (P|X) (P|1) + \frac{1}{3} (P|1)^2 \right)$.

Par sommation membre à membre : $(P|J)^2 + (P|K)^2 = (P|X)^2 + \frac{1}{3}(P|1)^2$

I.3.b

Soit $P \in E$. Alors:

$$\left(P \left| \sqrt{\frac{2}{3}} \right|^2 + (P|J)^2 + (P|K)^2 \right) = \frac{2}{3} (P|1)^2 + \left((P|X)^2 + \frac{1}{3} (P|1)^2 \right)$$
 selon la question I.3.a,
$$= (P|1)^2 + (P|X)^2$$

$$= \|P\|^2$$
 selon la question I.2.

Ainsi, la famille $\left(\sqrt{\frac{2}{3}}, J, K\right)$ vérifie la propriété (\mathcal{N})

II.1.a

x étant dans F^{\perp} , il est orthogonal à tous les e_i donc d'après la propriété (\mathcal{N}) : $||x||^2 = 0$

II.1.b

D'après la question II.1.a, $F^{\perp} = \{0\}$.

Par ailleurs, F est engendré par une famille finie, donc F est de dimension finie, donc $E = F \oplus F^{\perp} = F$. A fortiori, E est dimension finie.

II.2

> Soit $k \in [1, n]$. D'après la propriété (\mathcal{N}) , on a $||e_k||^2 = \sum_{i=1}^n (e_k|e_i)^2 = ||e_k||^4 + \sum_{i \neq k} (e_k|e_i)^2$, donc :

$$||e_k||^2 - ||e_k||^4 = \sum_{i \neq k} (e_k|e_i)^2.$$

Or, $||e_k|| \ge 1$, donc $||e_k||^2 \le ||e_k||^4$ donc $\sum_{i \ne k} (e_k|e_i)^2 \le 0$. Chaque terme de la somme étant positif, c'est que la somme est nulle et que chacun de ses termes aussi : $\forall i \ne k$, $(e_k|e_i) = 0$.

Ceci étant vrai pour tout $k \in [1, n]$, on peut dire que \mathcal{B} est orthogonale.

Soit encore $k \in [1, n]$. La relation (\mathcal{N}) devient alors $||e_k||^2 = ||e_k||^4$. Or, $||e_k|| > 0$, donc $||e_k|| = 1$. En conséquence, \mathcal{B} est une famille orthonormale.

De plus, cette famille engendre F, qui est E selon la question II.1.b, donc \mathcal{B} est une base orthonormale de E.

II.3.a

Comme \mathcal{B} engendre F = E (toujours selon II.1.b) et est libre, \mathcal{B} est une base de \mathcal{E}

II.3.b

 $\boxed{ \forall x, y \in E, (x|y) = \frac{1}{2} \left(\|x + y\|^2 - \|x\|^2 - \|y\|^2 \right) } \text{ ou } \left[\forall x, y \in E, (x|y) = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right) \right].$

Soient $x, y \in E$. On a:

$$(x|y) = \frac{1}{2} (\|x+y\|^2 - \|x\|^2 - \|y\|^2)$$

$$= \frac{1}{2} \left(\sum_{i=1}^n (x+y|e_i)^2 - \sum_{i=1}^n (x|e_i)^2 - \sum_{i=1}^n (y|e_i)^2 \right)$$

$$= \frac{1}{2} \sum_{i=1}^n \left(((x|e_i) + (y|e_i))^2 - (x|e_i)^2 - (y|e_i)^2 \right)$$

$$= \frac{1}{2} \sum_{i=1}^n 2(x|e_i)(y|e_i)$$

$$= \sum_{i=1}^n (x|e_i)(y|e_i).$$

D'où $\left| (x|y) = \sum_{i=1}^{n} (x|e_i)(y|e_i) \right|$.

Pour $i, j \in \llbracket 1, n \rrbracket$, $\llbracket A^2 \rrbracket_{i,j} = \sum_{k=1}^n A_{i,k} A_{k,j} = \sum_{k=1}^n (e_i|e_k)(e_k|e_j) = (e_i|e_j)$ d'après la question précédente. D'où $\boxed{A^2 = A}$.

Soit $x \in E$. Notons X la matrice de x dans $\mathcal{B} : X = ([X]_j)_{j \in [\![1,n]\!]} = [x]_{\mathcal{B}}$. Alors :

$$x \in \operatorname{Ker}(a) \iff X \in \operatorname{Ker}(A)$$

$$\iff AX = 0$$

$$\iff \forall i \in \llbracket 1, n \rrbracket, \ \sum_{j=1}^{n} [A]_{i,j}[X]_{j} = 0$$

$$\iff \forall i \in \llbracket 1, n \rrbracket, \ \left(e_{i} \left| \sum_{j=1}^{n} [X]_{j} e_{j} \right| \right) = 0$$

$$\iff \forall i \in \llbracket 1, n \rrbracket, \ \left(e_{i} \left| \sum_{j=1}^{n} [X]_{j} e_{j} \right| \right) = 0 \quad \text{par bilinéarité},$$

$$\iff \forall i \in \llbracket 1, n \rrbracket, \ e_{i} \perp \sum_{j=1}^{n} [X]_{j} e_{j}$$

$$\iff \sum_{j=1}^{n} [X]_{j} e_{j} \in F^{\perp} \quad \operatorname{car} F = \operatorname{Vect}((e_{i})_{i \in \llbracket 1, n \rrbracket}),$$

$$\iff \sum_{j=1}^{n} [X]_{j} e_{j} = 0 \quad \text{selon la question II.1.a,}$$

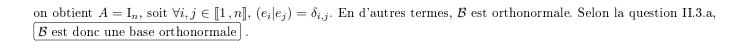
$$\iff X = 0 \quad \operatorname{car} \mathcal{B} \text{ est libre,}$$

$$\iff x = 0$$

Ainsi, $|\operatorname{Ker}(a) = \{0\}|$.

II.3.f

Selon la question II.3.e, a est injectif donc bijectif. De fait, \overline{A} est donc inversible. En multipliant $A^2 = A$ par A^{-1}



PROBLÈME 1

La série $\sum a_n$ est alternée puisque $\forall n \in \mathbb{N}^*, \ a_n = (-1)^n |a_n|$ avec $|a_n| = \frac{1}{n}$.

De plus, la suite $(|a_n|)$ décroît vers 0, donc le critère spécial des séries alternées s'applique : $|\sum a_n|$ converge

Soit $n \in \mathbb{N}$. La fonction $f: x \mapsto \ln(1+x)$ est de classe \mathscr{C}^{∞} sur]-1, $+\infty[$, donc l'inégalité de Taylor-Lagrange s'applique sur [0,1]:

$$\left| f(1) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} (1-0)^{k} \right| \leq \frac{|1-0|^{n+1}}{(n+1)!} \left\| f^{(n+1)} \right\|_{\infty,[0,1]}.$$

Or, par récurrence élémentaire, $\forall k \in \mathbb{N}^*$, $f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{(1+x)^k}$. A fortiori, f(0) = 0 et $\forall k \in \mathbb{N}^*$, $f^{(k)}(0) = (-1)^{k-1}(k-1)!$

Et, pour $x \in [0,1]$, $|f^{(n+1)}(x)| = \frac{n!}{(1+x)^{n+1}} \le n!$ car $1+x \ge 1$ donc $(1+x)^{n+1} \ge 1$, donc $\frac{1}{(1+x)^{n+1}} \le 1$. On en déduit

que $||f^{(n+1)}||_{\infty,[0,1]} \le n!$ de sorte l'inégalité de Taylor-Lagrange devient : $\left|\left|\ln(2) - \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k}\right| \le \frac{1}{n+1}$.

Comme $\frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} 0$, le théorème des gendarmes permet d'écrire que $\ln(2) - \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} \underset{n \to +\infty}{\longrightarrow} 0$

Autrement dit, $\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} \xrightarrow[n \to +\infty]{} \ln(2)$. Ainsi, $\sum_{k=1}^{n} \frac{(-1)^{k}}{k} \xrightarrow[n \to +\infty]{} - \ln(2)$ donc $\left| \sum_{k=1}^{+\infty} \frac{(-1)^{k}}{k} = -\ln(2) \right|$.

 $|a_n| = \frac{1}{n}$ est le terme général d'une série divergente en tant que série harmonique (ou série de Riemann avec $\alpha = 1 \leq 1$). Ainsi, $|\sum a_n|$ ne converge pas absolument |

D'après la formule de Moivre : $T_n = \sum_{k=1}^{n} \left(e^{ix} \right)^k = e^{ix} \frac{1 - e^{i(n+1)x}}{1 - e^{ix}} = e^{ix} \frac{1 - e^{i(n+1)x}}{e^{i\frac{x}{2}} \left(e^{-i\frac{x}{2}} - e^{i\frac{x}{2}} \right)} = e^{ix} \frac{1 - e^{i(n+1)x}}{-2i e^{i\frac{x}{2}} \sin(\frac{x}{2})}$

En simplifiant les exponentielles imaginaires pures : $\boxed{T_n = \frac{e^{i\frac{2n+1}{2}x} - e^{i\frac{x}{2}}}{2i\sin\left(\frac{x}{2}\right)}}.$ Comme $\left|e^{i\frac{2n+1}{2}x} - e^{i\frac{x}{2}}\right| \leqslant \left|e^{i\frac{2n+1}{2}x}\right| + \left|e^{i\frac{x}{2}}\right| \leqslant 2 \text{ et } |2i| = 1, \text{ on a direct ement } \boxed{|T_n| \leqslant \frac{1}{|\sin\left(\frac{x}{2}\right)|}}$

On a, pour tout $k \in \mathbb{N}^*$, $\frac{T_k - T_{k-1}}{k} = \frac{e^{ikx}}{k} = a_k$, donc $S_n = \sum_{k=1}^n \frac{T_k - T_{k-1}}{k}$

Selon la question précédente :

$$S_n = \sum_{k=1}^n \frac{T_k - T_{k-1}}{k}$$

$$= \sum_{k=1}^n \left(\frac{T_k}{k} - \frac{T_{k-1}}{k}\right)$$

$$= \sum_{k=1}^n \frac{T_k}{k} - \sum_{k=1}^n \frac{T_{k-1}}{k} \quad \text{par linéarité sur les sommes finies,}$$

$$= \sum_{k=1}^n \frac{T_k}{k} - \sum_{k=0}^{n-1} \frac{T_k}{k+1} \quad \text{par changement d'indice,}$$

$$= \frac{T_n}{n} - T_0 + \sum_{k=1}^n \left(\frac{T_k}{k} - \frac{T_k}{k+1}\right).$$

Or,
$$T_0 = 0$$
 et $\frac{1}{k} - \frac{1}{k+1} = \frac{1}{k(k+1)}$, d'où $S_n = \frac{T_n}{n} + \sum_{k=1}^n \frac{T_k}{k(k+1)}$.

Selon la question II.2.a, $T_k = O(1)$; de plus, $\frac{1}{k(k+1)} \sim \frac{1}{k^2}$, donc $\frac{T_k}{k(k+1)} = O\left(\frac{1}{k^2}\right)$.

Or, $\sum \frac{1}{k^2}$ est une série de Riemann convergente ($\alpha = 2 > 1$)

Par comparaison à une série à terme général positif, $\sum \frac{T_k}{k(k+1)}$ converge absolument, donc $\sum \frac{T_k}{k(k+1)}$ converge

On a encore $T_n = O(1)$, donc $\frac{T_n}{n} \longrightarrow 0$.

De plus, selon la question II.3, $\sum \frac{T_k}{k(k+1)}$ converge donc la suite $\left(\sum_{k=1}^{n-1} \frac{T_k}{k(k+1)}\right)_{n\geq 1}$ de ses sommes partielles converge.

Par opération algébrique, (S_n) converge ce qui signifie que $\sum a_n$ converge

On pose $u(t) = \frac{1}{i\lambda} e^{i\lambda t}$ et v(t) = f(t); u et v sont de classe \mathscr{C}^1 sur [a,b], donc on peut intégrer par parties :

$$\int_a^b e^{i\lambda t} f(t) dt = \left[\frac{1}{i\lambda} e^{i\lambda t} f(t) \right]_a^b - \frac{1}{i\lambda} \int_a^b e^{i\lambda t} f'(t) dt = \frac{1}{i\lambda} \left(e^{i\lambda b} f(b) - e^{i\lambda a} f(a) - \int_a^b e^{i\lambda t} f'(t) dt \right).$$

On majore ensuite classiquement, d'abord par inégalité triangulaire :

$$\left| \int_{a}^{b} e^{i\lambda t} f(t) dt \right| \leq \frac{1}{\lambda} \left(\left| e^{i\lambda b} f(b) \right| + \left| e^{i\lambda a} f(a) \right| + \left| \int_{a}^{b} e^{i\lambda t} f'(t) dt \right| \right)$$

$$\leq \frac{1}{\lambda} \left(\left| f(b) \right| + \left| f(a) \right| + (b-a) \left\| f' \right\|_{\infty, [a,b]} \right)$$

la norme $\|f'\|_{\infty,[a,b]}$ étant bien définie, d'après le théorème des bornes atteintes et la continuité de f' sur $[a\,,b]$.

Ainsi, $c = |f(b)| + |f(a)| + (b-a) ||f'||_{\infty,[a,b]}$ convient

Le théorème des gendarmes appliqué au résultat précédent entraı̂ne directement : $\left| \int_a^b e^{i\lambda t} f(t) dt \xrightarrow[\lambda \to +\infty]{} 0 \right|$

Soit $n \in \mathbb{N}^*$. Par linéarité, $\int_0^\pi \tilde{T}_n(t) dt = \sum_{k=1}^n \int_0^\pi e^{ikt} dt = \sum_{k=1}^n \left[\frac{e^{ikt}}{ik}\right]_0^\pi = \sum_{k=1}^n \left(\frac{e^{-ik\pi}}{ik} - \frac{1}{ik}\right)$.

D'où $\left| \int_0^{\pi} \tilde{T}_n(t) dt \right| = \sum_{k=1}^n \frac{(-1)^k - 1}{ik}$

Soit $n \in \mathbb{N}^*$. Avec la même démarche, on a : $\int_0^x \tilde{T}_n(t) dt = \sum_{k=1}^n \left[\frac{e^{ikt}}{ik} \right]_0^x = \sum_{k=1}^n \frac{e^{ikx}-1}{ik}.$

On en déduit que $i\int_0^x \tilde{T}_n(t) dt = \sum_{k=1}^n \frac{e^{ikx}}{k} - \sum_{k=1}^n \frac{1}{k}$. D'où $\left| S_n = i\int_0^x \tilde{T}_n(t) dt + \sum_{k=1}^n \frac{1}{k} \right|$

Soit $n \in \mathbb{N}^*$. D'après les deux questions précédentes, il vient :

$$S_n = i \int_0^{\pi} \tilde{T}_n(t) dt - i \int_x^{\pi} \tilde{T}_n(t) dt + \sum_{k=1}^n \frac{1}{k}$$

$$= \sum_{k=1}^n \frac{(-1)^k - 1}{k} - i \int_x^{\pi} \tilde{T}_n(t) dt + \sum_{k=1}^n \frac{1}{k}$$

$$= \sum_{k=1}^n \frac{(-1)^k}{k} - i \int_x^{\pi} \tilde{T}_n(t) dt.$$

D'après la question II.2.a, on en déduit le résultat : $S_n = \sum_{k=1}^n \frac{(-1)^k}{k} - \frac{1}{2} \int_x^\pi \frac{\mathrm{e}^{i\left(n+\frac{1}{2}\right)t}}{\sin\left(\frac{t}{2}\right)} \, \mathrm{d}t + \frac{1}{2} \int_x^\pi \frac{\mathrm{e}^{i\frac{t}{2}}}{\sin\left(\frac{t}{2}\right)} \, \mathrm{d}t$

$$\frac{\text{IV.4}}{\int_{x}^{\pi} \frac{e^{i\frac{t}{2}}}{\sin(\frac{t}{2})} dt = \int_{x}^{\pi} \frac{\cos(\frac{t}{2}) + i\sin(\frac{t}{2})}{\sin(\frac{t}{2})} dt = \int_{x}^{\pi} \frac{\cos(\frac{t}{2})}{\sin(\frac{t}{2})} dt + i \int_{x}^{\pi} dt = \left[2\ln\left(\sin\left(\frac{t}{2}\right)\right)\right]_{x}^{\pi} + i(\pi - x).$$

En simplifiant, il vient : $\boxed{ \int_x^{\pi} \frac{e^{i\frac{t}{2}}}{\sin(\frac{t}{2})} dt = -2\ln\left(\sin\left(\frac{x}{2}\right)\right) + i(\pi - x) }$

On recolle les morceaux :

- ightharpoonup d'après la question I.3, $\sum_{k=1}^{n} \frac{(-1)^k}{k} \xrightarrow[n \to +\infty]{} \ln(2)$;

Finalement, $\left[\sum_{k=1}^{+\infty} \frac{e^{ikx}}{k} = -\ln\left(2\sin\left(\frac{x}{2}\right)\right) + i\frac{\pi - x}{2}\right].$

IV.6

Comme $\sum \frac{e^{ikx}}{k}$ converge, il en est de même de sa partie réelle et de sa partie imaginaire ce qui justifie que les séries

 $\left[\sum \frac{\cos(kx)}{k} \text{ et } \sum \frac{\sin(kx)}{k} \text{ convergent} \right].$ De plus, $\sum_{k=1}^{+\infty} \frac{\cos(kx)}{k} + i \sum_{k=1}^{+\infty} \frac{\sin(kx)}{k} = \sum_{k=1}^{+\infty} \frac{e^{ikx}}{k} = -\ln\left(2\sin\left(\frac{x}{2}\right)\right) + i\frac{\pi - x}{2}.$

Par identification des parties réelles et imaginaires, il vient : $\left[\sum_{k=1}^{+\infty} \frac{\cos(kx)}{k} = -\ln\left(2\sin\left(\frac{x}{2}\right)\right)\right] \text{ et } \left[\sum_{k=1}^{+\infty} \frac{\sin(kx)}{k} = \frac{\pi-x}{2}\right]$

PROBLÈME 2

I.1

On utilise la caractérisation :

- \triangleright La fonction nulle est clairement 1-lipschitzienne (elle est en fait k-lipschitzienne pour tout k > 0...).
- Soient $\lambda_1, \lambda_2 \in \mathbb{R}$ et $f_1, f_2 \in \text{Lip}([a, b], \mathbb{R})$. Il existe donc $k_1, k_2 \in \mathbb{R}^{+*}$ tels que f_1 et f_2 soient respectivement k_1 -lipschitzienne et k_2 -lipschitzienne. Notons $g = \lambda_1 f_1 + \lambda_2 f_2$.

Soient $x,y\in [a\,,b].$ Par inégalité triangulaire :

$$|g(x) - g(y)| = |\lambda_1(f_1(x) - f_1(y)) + \lambda_2(f_2(x) - f_2(y))|$$

$$\leq |\lambda_1||f_1(x) - f_1(y)| + |\lambda_2||f_2(x) - f_2(y)|$$

$$\leq (|\lambda_1|k_1 + |\lambda_2|k_2)|x - y|.$$

Ainsi, g est $(|\lambda_1|k_1 + |\lambda_2|k_2)$ -lipschitzienne donc $g \in \text{Lip}([a, b], \mathbb{R})$.

Ainsi, $\left[\operatorname{Lip}(\left[a,b\right],\mathbb{R})\text{ est un sous-espace vectoriel de }\mathbb{R}^{\left[a,b\right]}\right]$

I.2

On vérifie que $\langle \cdot, \cdot \rangle$ est un produit scalaire.

- ightharpoonup C'est une forme puisque, si $f,g\in \mathrm{Lip}([-1\,,1]\,,\mathbb{R}),\ \langle f,g\rangle=\frac{2}{\pi}\int_0^\pi f(\cos(\theta))g(\cos(\theta))\ \mathrm{d}\theta\in\mathbb{R}.$
- ➤ Elle est linéaire à gauche, par linéarité de l'évaluation, bilinéarité du produit dans ℝ, et linéarité de l'intégration.
- ➤ Elle est symétrique par commutativité du produit dans ℝ.
- ightharpoonup Elle est positive par positivité de l'intégration : $\forall f \in \text{Lip}([-1,1],\mathbb{R}), \ \langle f,f \rangle = \frac{2}{\pi} \int_0^\pi f(\cos(\theta))^2 \ d\theta \geqslant 0.$
- Elle est définie. Soit $f \in \text{Lip}([-1,1],\mathbb{R})$. Supposons $\langle f,f \rangle = \frac{2}{\pi} \int_0^\pi f(\cos(\theta))^2 \, d\theta = 0$. Comme f est lipschitzienne sur [-1,1], f est continue sur [-1,1] donc $\theta \mapsto f(\cos(\theta))^2$ est continue sur $[0,\pi]$. Par stricte positivité de l'intégration, $\forall \theta \in [0,\pi]$, $f(\cos(\theta))^2 = 0$, i.e. $f(\cos(\theta)) = 0$. Comme $\theta \mapsto \cos(\theta)$ est surjective de $[0,\pi]$ dans [-1,1], on a donc $\forall t \in [-1,1]$, f(t) = 0. En d'autres termes, f est l'application nulle sur [-1,1].

En conclusion, $\langle \cdot, \cdot \rangle$ est un produit scalaire

II.1

$$\det(M) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \prod_{i=1}^n [M]_{\sigma(i),i} \ .$$

II.2

Clairement, T_0 est un polynôme de degré 0.

Soit $n \in \mathbb{N}^*$. Notons $M = ([M]_{i,j})_{1 \leqslant i,j \leqslant n}$ la matrice associée au déterminant T_n . On a : $T_n = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \prod_{i=1}^n [M]_{\sigma(i),i}$.

Chaque produit de cette somme est un produit de n monômes de degré ≤ 1 , donc T_n est de degré inférieur ou égal à n. De plus, la seule possibilité pour que ces n monômes soient de degré 1 est de choisir tous les termes de la diagonale, c'est-à-dire le terme relatif à $\sigma = \mathrm{Id}_{\llbracket 1,n \rrbracket}$. Autrement dit, dans cette somme, il y a un terme de degré n et des termes de degré inférieur ou égal à n-1 donc T_n est un polynôme de degré n.

| II.3

On développe par rapport à la dernière ligne :

On développe par rapport à la dernière colonne : $T_n = 2XT_{n-1} - T_{n-2}$.

 \int II.4

Soit $\theta \in \mathbb{R}$. Procédons par récurrence double sur $n \in \mathbb{N}^*$

 $ightharpoonup Initialisation. T_1 = X, donc T_1(\cos(\theta)) = \cos(\theta).$

$$T_2 = \begin{vmatrix} X & 1 \\ 1 & 2X \end{vmatrix} = 2X^2 - 1$$
, donc $T_2(\cos(\theta)) = 2\cos^2(\theta) - 1 = \cos(2\theta)$.

 $ightharpoonup H\acute{e}r\acute{e}dit\acute{e}$. Soit $n\in\mathbb{N},\ n\geqslant 3$. Supposons que $T_{n-2}(\cos(\theta))=\cos((n-2)\theta)$ et $T_{n-1}(\cos(\theta))=\cos((n-1)\theta)$. D'après la question II.3 :

$$T_n(\cos(\theta)) = 2\cos(\theta)T_{n-1}(\cos(\theta)) - T_{n-2}(\cos(\theta))$$

$$= 2\cos(\theta)\cos((n-1)\theta) - \cos((n-2)\theta) \text{ (hypothèse de récurrence)}$$

$$= \cos(\theta + (n-1)\theta) + \cos(\theta - (n-1)\theta) - \cos((n-2)\theta) \text{ (formule trigonométrique)}$$

$$= \cos(n\theta) \text{ car } \cos(\theta - (n-1)\theta) = \cos((2-n)\theta) = \cos((n-2)\theta).$$

D'où la propriété au rang n.

On en conclut que $\forall n \in \mathbb{N}^*, T_n(\cos(\theta)) = \cos(n\theta)$

Prouvons l'unicité de T_n . Soit $n \in \mathbb{N}^*$. Supposons qu'il existe $P \in \mathbb{R}[X]$ tel que $\forall \theta \in \mathbb{R}$, $P(\cos(\theta)) = \cos(n\theta)$. On a donc : $\forall \theta \in \mathbb{R}$, $T_n(\cos(\theta)) = P(\cos(\theta))$. Comme $\theta \mapsto \cos(\theta)$ est surjective de \mathbb{R} dans [-1,1], on peut donc dire que $\forall x \in [-1,1]$, $T_n(x) = P(x)$. Ainsi, T_n et P coincident en une infinité de valeurs, donc $T_n = P$. Autrement dit, T_n est l'unique polynôme vérifiant $\forall \theta \in \mathbb{R}$, $T_n(\cos(\theta)) = \cos(n\theta)$.

III.1

 \triangleright Soit $(n,m) \in (\mathbb{N}^*)^2$ tel que $n \neq m$. Alors :

$$\langle T_n, T_m \rangle = \frac{2}{\pi} \int_0^{\pi} T_n(\cos(\theta)) T_m(\cos(\theta)) d\theta$$

$$= \frac{2}{\pi} \int_0^{\pi} \cos(n\theta) \cos(m\theta) d\theta$$

$$= \frac{1}{\pi} \int_0^{\pi} (\cos((n+m)\theta) + \cos((n-m)\theta)) d\theta$$

$$= \frac{1}{\pi} \left(\int_0^{\pi} \cos((n+m)\theta) d\theta + \int_0^{\pi} \cos((n-m)\theta) d\theta \right)$$

$$= \frac{1}{\pi} \left(\left[\frac{\sin((n+m)\theta)}{n+m} \right]_0^{\pi} + \left[\frac{\sin((n-m)\theta)}{n-m} \right]_0^{\pi} \right)$$

$$= \frac{1}{\pi} \left(\frac{\sin((n+m)\pi)}{n+m} + \frac{\sin((n-m)\pi)}{n-m} \right)$$

$$= 0$$

 \triangleright Soit $n \in \mathbb{N}^*$. Alors:

$$\langle T_n, T_0 \rangle = \frac{\sqrt{2}}{\pi} \int_0^{\pi} \cos(n\theta) d\theta$$
$$= \frac{1}{\pi} \left[\frac{\sin(n\theta)}{n} \right]_0^{\pi}$$
$$= \frac{1}{\pi} \frac{\sin(n\pi)}{n}$$
$$= 0.$$

Donc la famille $(T_n)_{n\in\mathbb{N}}$ est orthogonale.

 \triangleright Soit $n \in \mathbb{N}^*$. Alors:

$$||T_n||^2 = \frac{2}{\pi} \int_0^{\pi} \cos(n\theta)^2 d\theta$$

$$= \frac{2}{\pi} \int_0^{\pi} \frac{1 + \cos(2n\theta)}{2} d\theta$$

$$= \frac{1}{\pi} \left(\int_0^{\pi} d\theta + \int_0^{\pi} \cos(2n\theta) d\theta \right)$$

$$= \frac{1}{\pi} (\pi + 0)$$

$$= 1.$$

$$> ||T_0||^2 = \frac{2}{\pi} \int_0^{\pi} \frac{1}{2} d\theta = 1.$$

La famille est donc également normée. Donc $|T_n|$ est orthonormée

III.2

Soit $n \in \mathbb{N}$. On sait que la distance de f à $\mathbb{R}_{n+1}[X]$ vérifie : $d(f, \mathbb{R}_{n+1}[X]) = ||f - p_{n+1}(f)||$. Or, $p_n(f) \in \mathbb{R}_n[X] \subset \mathbb{R}_{n+1}[X]$, donc $d(f, \mathbb{R}_{n+1}[X]) = \inf\{||f - P||, P \in \mathbb{R}_{n+1}[X]\} \le ||f - p_n(f)||$. D'où la décroissance de $(\|f - p_n(f)\|)$

D'après l'inégalité de Cauchy-Schwarz, $|\langle f - p_n(f), g - p_n(g) \rangle| \le ||f - p_n(f)|| ||g - p_n(g)||$.

De plus, comme $(T_k)_{k \in [0,n]}$ est une base orthonormale de $\mathbb{R}_n[X]$, on a $p_n(f) = \sum_{i=1}^n \langle f, T_i \rangle T_i$.

De même pour $p_n(g) = \sum_{i=0}^n \langle g, T_j \rangle T_j$.

Par bilinéarité : $\langle f - p_n(f), g - p_n(g) \rangle = \langle f, g \rangle - \sum_{i=0}^n \langle f, T_i \rangle \langle g, T_i \rangle - \sum_{j=0}^n \langle g, T_j \rangle \langle f, T_j \rangle + \sum_{0 \leqslant i,j \leqslant n} \langle f, T_i \rangle \langle g, T_j \rangle \langle T_i, T_j \rangle$.

Dans cette dernière somme, les termes pour $i \neq j$ sont nuls et alors les trois derniers termes sont identiques au signe près. D'où $\langle f - p_n(f), g - p_n(g) \rangle = \langle f, g \rangle - \sum_{i=0}^n \langle f, T_i \rangle \langle g, T_i \rangle$.

En conclusion, $\left| \left| \langle f, g \rangle - \sum_{k=0}^{n} \langle f, T_k \rangle \langle g, T_k \rangle \right| \leq \|f - p_n(f)\| \|g - p_n(g)\| \right|$.

D'après la formule de König-Huygens pour la variable aléatoire $|Y|:0\leqslant \mathbb{V}(|Y|)=\mathbb{E}(|Y|^2)-\mathbb{E}(|Y|)^2=\mathbb{E}(Y^2)-\mathbb{E}(|Y|)^2$. D'après la même formule pour $Y: \mathbb{V}(Y) = \mathbb{E}(Y^2) - \mathbb{E}(Y)^2 = \mathbb{E}(Y^2)$.

Donc $\mathbb{E}(|Y|)^2 \leq \mathbb{E}(Y^2) \leq \mathbb{V}(Y)$. Comme $\mathbb{E}(|Y|) \geq 0$, on en déduit $\mathbb{E}(|Y|) \leq \sigma(Y)$.

La fonction $x \mapsto x(1-x)$ est continue sur le segment [0,1] donc elle est bornée et atteint ses bornes.

En particulier, $\max_{x \in [0,1]} x(1-x)$ est bien défini

De plus, cette fonction est croissante sur $\left[0,\frac{1}{2}\right]$ et décroissante sur $\left[\frac{1}{2},1\right]$, donc elle atteint son maximum en $\frac{1}{2}$, et celui-ci vaut $\max_{x \in [0,1]} x(\overline{1-x}) = \frac{1}{4}$

IV.2.b

Posons $Y = \frac{S_n}{r} - x$.

Par linéarité, $\mathbb{E}(Y) = \frac{1}{n} \mathbb{E}(S_n) - x = \frac{1}{n} nx - x = 0$. Ainsi, Y est centrée, donc d'après la question IV.1 : $\mathbb{E}(|Y|) \leqslant \sigma(Y)$. Calculons $\mathbb{V}(Y)$: $\mathbb{V}(Y) = \mathbb{V}\left(\frac{S_n}{n} - x\right) = \frac{1}{n^2} \mathbb{V}(S_n) = \frac{x(1-x)}{n}$.

D'après la question IV.2.a : $\mathbb{V}(Y) \leqslant \frac{1}{4n}$. Donc $\sigma(Y) \leqslant \frac{1}{2\sqrt{n}}$. En résumé, $\left| \mathbb{E}\left(\left| \frac{S_n}{n} - x \right| \right) \leqslant \frac{1}{2\sqrt{n}} \right|$.

D'après le théorème de transfert, $\mathbb{E}\left(f\left(\frac{S_n}{n}\right)\right) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \mathbb{P}(S_n = k) = B_n(f)(x)$.

On écrit alors :

$$|B_n(f)(x) - f(x)| = \left| \mathbb{E}\left(f\left(\frac{S_n}{n}\right)\right) - f(x) \right|$$

$$= \left| \mathbb{E}\left(f\left(\frac{S_n}{n}\right) - f(x)\right) \right| \text{ par linéarité de l'espérance,}$$

$$\leqslant \mathbb{E}\left(\left|f\left(\frac{S_n}{n}\right) - f(x)\right|\right) \text{ par inégalité triangulaire (pour les sommes finies),}$$

$$\leqslant \mathbb{E}\left(k\left|\frac{S_n}{n} - x\right|\right) \text{ car } f \text{ est } k\text{-lipschitzienne,}$$

$$\leqslant k\mathbb{E}\left(\left|\frac{S_n}{n} - x\right|\right) \text{ par linéarité,}$$

$$\leqslant k\frac{1}{2\sqrt{n}} \text{ d'après la question précédente.}$$

D'où le résultat : $|B_n(f)(x) - f(x)| \leq \frac{k}{2\sqrt{n}}|$.

D'après la question précécente, $\forall x \in [0,1], |B_n(f)(x) - f(x)| \leq \frac{k}{2\sqrt{n}}$

Par passage à la borne supérieure, $0 \le ||B_n(f) - f||_{\infty} \le \frac{k}{2\sqrt{n}}$.

Or, $\frac{k}{2\sqrt{n}} \underset{n \to +\infty}{\longrightarrow} 0$. D'après le théorème des gendarmes, $\|B_n(f) - f\|_{\infty} \underset{n \to +\infty}{\longrightarrow} 0$.

Autrement dit, la suite $(B_n(f))$ converge uniformément vers f sur [0,1].

Soit $g \in \text{Lip}([-1,1],\mathbb{R})$. $\varphi: x \mapsto 2x-1$ est une bijection de [0,1] dans [-1,1], on décide de poser $f: x \mapsto g\left(\frac{x+1}{2}\right)$, qui est donc définie sur [0,1].

 \rightarrow De plus, $f \in \text{Lip}([0,1],\mathbb{R})$. En effet, si $x,y \in [0,1]$:

$$|f(x) - f(y)| = |q(2x - 1) - q(2y - 1)| \le k|(2x - 1) - (2y - 1)| \le 2k|x - y|$$

en utilisant le réel strictement positif k tel que g est k-lipschitzienne. Donc f est 2k-lipschitzienne.

 \triangleright D'après la question IV.3.a, la suite de polynômes $(B_n(f))_{n\ni\mathbb{N}^*}$ converge uniformément vers f.

En utilisant la bijection réciproque φ^{-1} de φ , on définit alors une suite de polynômes $(P_n)_{n\in\mathbb{N}^*}$ en posant :

$$\forall x \in [-1, 1], \ P_n(x) = B_n(f)\left(\frac{x-1}{2}\right).$$

Et on a:

$$\begin{aligned} \|P_n - g\|_{\infty}^{[-1,1]} &= \sup \left\{ |P_n(x) - g(x)|, \ x \in [-1,1] \right\} \\ &= \sup \left\{ \left| B_n(f) \left(\frac{x+1}{2} \right) - g(x) \right|, x \in [-1,1] \right\} \\ &= \sup \left\{ |B_n(f) (x) - g(2x-1)|, x \in [0,1] \right\} \quad \text{par bijectivité}, \\ &= \sup \left\{ |B_n(f) (x) - f(x)|, x \in [0,1] \right\} \\ &= \|B_n(f) - f\|_{0,1}^{[0,1]} \end{aligned}$$

 $(P_n)_{n\in\mathbb{N}^*}$ converge uniformément vers g.

∫ V.1.a ∟

D'après la question IV.3.b, il existe une suite de polynôme de $(B_n(f))$ qui converge uniformément vers f.

Donc | il existe $n \in \mathbb{N}$ tel que $||f - P_n||_{\infty} < \varepsilon$ |

_____ V.1.b L

On a $||f - p_N(f)|| = d(f, \mathbb{R}_N[X])$. Or, $P \in \mathbb{R}_N[X]$, donc $d(f, \mathbb{R}_N[X]) \leq ||f - P||$, soit $||f - p_N(f)|| \leq ||f - P||$.

Selon la question III.2 et la question V.1.b : $\forall n \geq N, \|f - p_n(f)\| \leq \|f - P\|$. Il suffit alors de remarquer que $\|f - P\| \leq \|f - P\|_{\infty}^{[-1,1]} \sqrt{2}$, ce qui découle de

$$||f - P||^2 = \frac{2}{\pi} \int_0^{\pi} (f(\cos(\theta)) - P(\cos(\theta)))^2 d\theta \leqslant \frac{2}{\pi} \int_0^{\pi} (||f - P||_{\infty}^{[-1,1]})^2 d\theta \leqslant 2(||f - P||_{\infty}^{[-1,1]})^2.$$

D'où
$$\left\{ \forall n \geqslant N, \|f - p_n(f)\| < \varepsilon \sqrt{2} \right\}$$

Selon V.1.a, $||f - p_n(f)|| \underset{n \to +\infty}{\longrightarrow} 0$. De la même manière, on a $||g - p_n(g)|| \underset{n \to +\infty}{\longrightarrow} 0$.

D'après le théorème des gendarmes et la question III.3, $\langle f, g \rangle - \sum_{k=0}^{n} \langle f, T_k \rangle \langle g, T_k \rangle \underset{n \to +\infty}{\longrightarrow} 0$.

Par conséquent, $\left| \langle f, g \rangle = \sum_{k=0}^{+\infty} \langle f, T_k \rangle \langle g, T_k \rangle \right|$.

V.3.a

Soit $k \in \mathbb{N}$. $\langle f, T_k \rangle = \frac{2}{\pi} \int_0^{\pi} |\cos(\theta)| \cos(k\theta) \, d\theta$. En posant $t = \theta - \frac{\pi}{2}$, changement de variable \mathscr{C}^1 bijectif de $[0, \pi]$ dans $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, on a directement $\left[\langle f, T_k \rangle = \frac{2}{\pi} \int_{-\pi/2}^{\pi/2} |\sin(t)| \cos\left(kt + \frac{k\pi}{2}\right) dt\right]$ puisque $\cos\left(t + \frac{\pi}{2}\right) = -\sin(t)$.

V.3.b

- ightharpoonup Soit $k \in \mathbb{N}$. $\cos\left((2k+1)t + k\pi + \frac{\pi}{2}\right) = \sin\left((2k+1)t + k\pi\right) = (-1)^k \sin\left((2k+1)t\right) \operatorname{donc}\left|\langle f, T_{2k+1}\rangle\right| = 0$ l'intégrande est impaire et l'intégrale se fait sur un intervalle centré en 0.
- \triangleright Soit $k \in \mathbb{N}^*$. $\cos(2kt + k\pi) = (-1)^k \cos(2kt)$, donc:

$$\langle f, T_{2k} \rangle = (-1)^k \frac{2}{\pi} \int_{-\pi/2}^{\pi/2} |\sin(t)| \cos(2kt) dt$$

$$= (-1)^k \frac{4}{\pi} \int_0^{\pi/2} \sin(t) \cos(2kt) dt \quad \text{par parit\'e de l'int\'egrande},$$

$$= (-1)^k \frac{2}{\pi} \int_0^{\pi/2} (\sin((1+2k)t) + \sin((1-2k)t)) dt$$

$$= (-1)^k \frac{2}{\pi} \left[-\frac{\cos((1+2k)t)}{1+2k} - \frac{\cos((1-2k)t)}{1-2k} \right]_0^{\pi/2}$$

$$= (-1)^k \frac{2}{\pi} \left[\frac{1}{1+2k} + \frac{1}{1-2k} \right]$$

$$= (-1)^{k+1} \frac{4}{\pi} \frac{1}{(2k+1)(2k-1)}.$$

D'où
$$\left[\langle f, T_{2k} \rangle = (-1)^{k+1} \frac{4}{\pi} \frac{1}{4k^2 - 1} \right]$$

$$> \langle f, T_0 \rangle = \frac{\sqrt{2}}{\pi} \int_0^{\pi} |\cos(\theta)| d\theta = \frac{2\sqrt{2}}{\pi} \int_0^{\pi/2} \cos(\theta) d\theta = \frac{2\sqrt{2}}{\pi}.$$

On calcule ensuite $\sum_{k=1}^{+\infty} \frac{1}{(4k^2-1)^2}$ en utilisant la question V.2 : $\langle f,g\rangle = \sum_{k=0}^{+\infty} \langle f,T_k\rangle \langle g,T_k\rangle$.

Or, selon les calculs précédents, le membre de droite de cette égalité est $\frac{8}{\pi^2} + \sum_{k=1}^{+\infty} \frac{16}{\pi^2} \frac{1}{(4k^2-1)^2}$.

Et
$$\langle f, g \rangle = \frac{2}{\pi} \int_0^{\pi} \cos^2(\theta) d\theta = \frac{1}{\pi} \int_0^{\pi} (1 + \cos(2\theta)) d\theta = 1.$$

On en déduit
$$\frac{8}{\pi^2} + \sum_{k=1}^{+\infty} \frac{16}{\pi^2} \frac{1}{(4k^2 - 1)^2} = 1$$
, soit $\left[\sum_{k=1}^{+\infty} \frac{1}{(4k^2 - 1)^2} = \frac{\pi^2}{16} - \frac{1}{2} \right]$.

Clairement, $b = d = \frac{1}{4}$

En prenant la limite quand $X \to +\infty$, après avoir multiplié par X, on a $0 = \frac{a}{2} + \frac{c}{2}$ donc c = -a. Et en évaluant en 0, il vient $1 = -a + \frac{1}{4} + -a + \frac{1}{4}$, soit $a = -\frac{1}{4}$ et $c = \frac{1}{4}$.

Ainsi,
$$\frac{1}{4X^2 - 1} = \frac{1}{4} \left(-\frac{1}{2X - 1} + \frac{1}{(2X - 1)^2} + \frac{1}{2X + 1} + \frac{1}{(2X + 1)^2} \right) .$$

En injectant dans la relation précédente, on a $\sum_{k=1}^{+\infty} \left(-\frac{1}{2k-1} + \frac{1}{(2k-1)^2} + \frac{1}{2k+1} + \frac{1}{(2k+1)^2} \right) = \frac{\pi^2}{16} - \frac{1}{2}$.

On peut utiliser la linéarité pour isoler les deux carrés (termes généraux de séries convergentes)

$$\sum_{k=1}^{+\infty} \left(-\frac{1}{2k-1} + \frac{1}{2k+1} \right) + \sum_{k=1}^{+\infty} \frac{1}{(2k-1)^2} + \sum_{k=1}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{4} - 2.$$

Par translation d'indice, $\sum_{k=1}^{+\infty} \frac{1}{(2k-1)^2} = \sum_{k=1}^{+\infty} \frac{1}{(2k+1)^2}.$

En isolant le premier terme : $\sum_{k=1}^{+\infty} \frac{1}{(2k+1)^2} = \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} - 1$.

Par télescopage : $\sum_{k=1}^{+\infty} \left(-\frac{1}{2k-1} + \frac{1}{2k+1} \right) = -1.$

On en déduit : $2\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} - 2 = \frac{\pi^2}{4} - 2$, soit $\left| \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8} \right|$.

Enfin, on décompose $\sum_{k=1}^{+\infty} \frac{1}{k^2} = \sum_{k=1}^{+\infty} \frac{1}{(2k)^2} + \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2}$.

Or, $\sum_{k=1}^{+\infty} \frac{1}{(2k)^2} = \frac{1}{4} \sum_{k=1}^{+\infty} \frac{1}{k^2}$. Donc $\frac{3}{4} \sum_{k=1}^{+\infty} \frac{1}{k^2} = \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}$, ce qui entraı̂ne : $\left| \sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \right|$

