Préambule

Durée: 4h00.

Les calculatrices sont interdites pour cette épreuve.

Vous apporterez le plus grand soin à la rigueur et à la rédaction de vos réponses.

Vous êtes invités à <u>encadrer</u> ou [souligner] vos réponses.

Le sujet est composé de trois questions de cours, de trois savoir-faire, d'un exercice et d'un problème, qui sont tous largement indépendants.

COURS

- 1. Énoncer précisément le théorème des bornes atteintes.
- 2. Donner le développement limité en 0 à l'ordre n de e^x , de $\sin(x)$ et de $\ln(1+x)$. On pourra poser n=2p puis n=2p+1 pour $\sin(x)$.
- 3. Énoncer précisément le théorème de Rolle.

SAVOIR-FAIRE DU COURS

- 1. Montrer que la fonction $x\mapsto \sin\left(\frac{1}{x}\right)$ n'a pas de limite en 0.
- 2. Trouver un équivalent simple de $\frac{\sqrt{1+x}-\sqrt{1-x}}{x}$ quand $x\to 0$.
- 3. Calculer la dérivée n-ème de $x \mapsto x^2 e^x$, pour $n \in \mathbb{N}$.

EXERCICE - Adapté d'un oral de Centrale-Supélec MP

On définit la fonction f en posant $\forall x \in \mathbb{R}^+$, $f(x) = \sqrt{\frac{1+x}{2}}$. On note ensuite $a_0 = 0$, $b_0 = 2$ et, pour tout $n \in \mathbb{N}$:

$$a_{n+1} = f(a_n)$$
 et $b_{n+1} = \frac{b_n}{a_{n+1}}$.

- 1. Justifier que f est dérivable sur \mathbb{R}^+ et que $\forall x \in \mathbb{R}^+$, $0 \leqslant f'(x) \leqslant \frac{1}{2\sqrt{2}}$.
- 2. Montrer la suite $(a_n)_{n\in\mathbb{N}}$ est bien définie, à valeurs dans [0,1] et croissante.
- 3. Montrer que $\forall n \in \mathbb{N}, 1 a_{n+1} \leqslant \frac{1}{2\sqrt{2}}(1 a_n)$.
- 4. Montrer que $\forall n \in \mathbb{N}, 1 a_n \leq \frac{1}{(2\sqrt{2})^n}$ et en déduire la limite de la suite (a_n) .
- 5. Justifier qu'il existe une suite $(\theta_n)_{n\in\mathbb{N}}$ à valeurs dans $\left[0,\frac{\pi}{2}\right]$, que l'on explicitera, telle que $\forall n\in\mathbb{N}, a_n=\cos(\theta_n)$.
- 6. Justifier que la suite $(b_n)_{n\in\mathbb{N}}$ et bien définie et qu'il existe une suite $(\lambda_n)_{n\in\mathbb{N}^*}$ telle que $\forall n\in\mathbb{N}^*,\ b_n=\lambda_n\sin(\theta_n)$.
- 7. En déduire la limite ℓ de la suite (b_n) .
- 8. Montrer qu'il existe deux constantes α et β , à déterminer, telles que $b_n = \ell + \frac{\alpha}{4^n} + \frac{\beta}{16^n} + o\left(\frac{1}{16^n}\right)$.

PROBLÈME - Inspiré d'un écrit de Centrale-Supélec PC 2000

On note \mathcal{K} l'ensemble des fonctions réelles qui sont à la fois : positives ou nulles, convexes, de classe \mathscr{C}^1 sur \mathbb{R}^+ , deux fois dérivables sur \mathbb{R}^{+*} et qui s'annulent en 0. On note \mathcal{K}_{∞} l'ensemble des fonctions de \mathcal{K} qui vérifient en outre :

$$\frac{f(x)}{x} \xrightarrow[x \to +\infty]{} +\infty.$$

Partie I. Quelques exemples

- 1. On considère, dans cette question uniquement, la fonction f définie sur \mathbb{R}^+ par $f(x) = x \operatorname{th}(x)$.
 - (a) Vérifier que $f \in \mathcal{K}$.
 - (b) Calculer la limite quand $x \to +\infty$ de f'(x) et de $\frac{f(x)}{x}$. f est-elle dans \mathcal{K}_{∞} ?
 - (c) Former un développement limité en 0 à l'ordre 1 de $\frac{1+X}{1-X}$
 - (d) En déduire que $f(x) = x 1 + 2e^{-2x} + o(e^{-2x})$.
 - (e) Montrer que la courbe de f admet une asymptote oblique en $+\infty$ dont on déterminera une équation, et préciser la position de la courbe par rapport à l'asymptote au voisinage de $+\infty$.
- 2. On considère, dans cette question uniquement, la fonction f définie sur I par :

$$f(x) = x \operatorname{Arctan}(x) - \frac{1}{2} \ln(1 + x^2).$$

- (a) Vérifier que $f \in \mathcal{K}$.
- (b) Montrer que, pour tout $x \in \mathbb{R}^{+*}$, $\operatorname{Arctan}(x) + \operatorname{Arctan}\left(\frac{1}{x}\right) = \frac{\pi}{2}$.
- (c) En déduire que $f(x) = \frac{\pi}{x \to +\infty} \frac{\pi}{2} x \ln(x) + O(1)$.
- (d) Calculer la limite quand $x \to +\infty$, de f'(x) et de $\frac{f(x)}{x}$. f est-elle dans \mathcal{K}_{∞} ? Existe-t-il une droite asymptote à la courbe représentative de f au voisinage de $+\infty$?
- 3. Dans cette question, on fixe $\alpha \in]1, +\infty[$ et on pose $\varphi_{\alpha}(0) = 0$ et, pour tout $x \in \mathbb{R}^{+*}, \varphi_{\alpha}(x) = \frac{x^{\alpha}}{\alpha}$. Montrer que $\varphi_{\alpha} \in \mathcal{K}_{\infty}$.

Partie II. Quelques inégalités utiles

Dans toute cette partie, on considère une fonction $f \in \mathcal{K}$ quelconque.

- 1. Montrer que $\forall x \in \mathbb{R}^+, f(x) \leqslant xf'(x)$.
- 2. En déduire que la fonction $\theta: x \mapsto \frac{f(x)}{x}$ est croissante sur l'intervalle \mathbb{R}^{+*} .
- 3. Montrer que $\forall (x,y) \in (\mathbb{R}^+)^2$, $f(x) + f(y) \leqslant f(x+y)$.
- 4. Montrer que $\forall x \in \mathbb{R}^+, \ \frac{x}{2}f'\left(\frac{x}{2}\right) \leqslant f(x) f\left(\frac{x}{2}\right) \leqslant f(x)$.

Partie III. Comportement à l'infini

Dans toute cette partie, on considère encore une fonction $f \in \mathcal{K}$ quelconque. On suggère de bien lire les résultats de la partie II; on pourra naturellement les utiliser, même si l'on n'a pas réussi à les démontrer.

1. Montrer que $f \in \mathcal{K}_{\infty}$ si, et seulement si, $f'(x) \underset{x \to +\infty}{\longrightarrow} +\infty$.

On suppose dans la fin de cette partie que f n'est pas constante et n'est pas dans \mathcal{K}_{∞} .

- 2. Montrer qu'il existe $a \in \mathbb{R}^{+*}$ tel que $f(x) \sim ax$.
- 3. Montrer que $f'(x) \underset{x \to +\infty}{\longrightarrow} a$.
- 4. Montrer qu'il existe $b \in \mathbb{R} \cup \{-\infty\}$ tel que $f(x) ax \xrightarrow[x \to +\infty]{} b$.
- 5. Dans le cas où $b \in \mathbb{R}$, montrer que la courbe représentative de f possède une droite asymptote au voisinage de $+\infty$ et préciser la position de la courbe par rapport à son asymptote.

Partie IV. Transformée de Legendre d'une fonction de \mathcal{K}_{∞}

À toute fonction $f \in \mathcal{K}_{\infty}$ et tout $m \in \mathbb{R}^+$, on associe la fonction $h_m : \mathbb{R}^+ \to \mathbb{R}$ définie par :

$$\forall x \in \mathbb{R}^+, \ h_m(x) = mx - f(x).$$

On définit également l'ensemble $J(f) = \{m \in \mathbb{R}^+, h_m \text{ est majorée sur } \mathbb{R}^+\}$ et, pour tout $m \in J(f)$, on pose :

$$f^*(m) = \sup\{h_m(x), \ x \in \mathbb{R}^+\}.$$

La fonction f^* ainsi définie sur J(f) est appelée transformée de Legendre-Fenchel de f.

- 1. Déterminer, pour $m \in \mathbb{R}^+$, la limite de h_m en $+\infty$ et en déduire que $J(f) = \mathbb{R}^+$.
- 2. Montrer que:

$$\forall (x,m) \in (\mathbb{R}^+)^2, \ f(x) + f^*(m) \geqslant mx.$$

- 3. Soit $(f_1, f_2) \in \mathcal{K}^2_{\infty}$. Montrer que, si $\forall x \in \mathbb{R}^+, f_1(x) \leqslant f_2(x)$, alors $\forall x \in \mathbb{R}^+, f_1^*(x) \geqslant f_2^*(x)$.
- 4. Montrer que f^* est convexe sur \mathbb{R}^+ .
- 5. Dans cette question, on cherche à déterminer les éléments f de \mathcal{K}_{∞} vérifiant $f^* = f$.
 - (a) Montrer que la fonction $k: x \mapsto \frac{x^2}{2}$ est dans \mathcal{K}_{∞} et vérifie $k^* = k$.
 - (b) On suppose réciproquement que f est une fonction de \mathcal{K}_{∞} qui vérifie $f^* = f$. Montrer que $\forall x \in \mathbb{R}^+, f(x) \geq k(x)$ puis que $\forall x \in \mathbb{R}^+, f(x) = k(x)$.
- 6. Montrer que, pour tout $x \in \mathbb{R}^+$, $f^*(f'(x)) = xf'(x) f(x)$.
- 7. Montrer que, pour tout $f \in \mathcal{K}_{\infty}$, $(f^*)^* = f$.
- 8. On définit l'ensemble \mathcal{K}^b_{∞} des fonctions positives ou nulles, convexes, deux fois dérivables sur \mathbb{R}^+ et pour lesquelles il existe $\lambda, \mu \in \mathbb{R}^{+*}$ vérifiant :

$$\forall x \in \mathbb{R}^+, \ \lambda \leqslant f''(x) \leqslant \mu.$$

- (a) Soit $f \in \mathcal{K}_{\infty}^b$ et notons $\lambda \in \mathbb{R}^{+*}$ une constante vérifiant $\forall x \in \mathbb{R}^+, f''(x) \geqslant \lambda$. Montrer que $\forall x \in \mathbb{R}^+, f'(x) \geqslant \lambda x$, et en déduire que f' réalise une bijection de \mathbb{R}^+ sur \mathbb{R}^+ .
- (b) Montrer que, si $f \in \mathcal{K}^b_{\infty}$, alors f^* est dérivable sur \mathbb{R}^+ et exprimer $(f^*)'$ en fonction de f'.
- (c) Montrer que l'application suivante est bijective :

$$\mathscr{L}: \left| \begin{array}{ccc} \mathcal{K}^b_{\infty} & \longrightarrow & \mathcal{K}^b_{\infty} \\ f & \longmapsto & f^* \end{array} \right..$$

9. Application. Soit $(p,q) \in]1, +\infty[^2 \text{ v\'erifiant } \frac{1}{p} + \frac{1}{q} = 1.$

On reprend la fonction φ_{α} introduit dans la partie I à la question I.3.

- (a) Montrer que $\varphi_p^* = \varphi_q$.
- (b) En déduire l'inégalité de Young : $\forall (x,y) \in (\mathbb{R}^+)^2, xy \leqslant \frac{x^p}{p} + \frac{y^q}{q}$.