EXERCICE

Écrivons w sous forme trigonométrique :

$$w = -2 + 2i$$

$$= 2\sqrt{2} \left(-\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \right)$$

$$= 2\sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$$

$$= 2\sqrt{2} e^{\frac{3i\pi}{4}}$$

Ainsi $w = 2\sqrt{2} e^{\frac{3i\pi}{4}}$

Soit $z \in \mathbb{C}$: $(\mathcal{E}_1) \iff z^3 = \left(\sqrt{2}e^{i\frac{\pi}{4}}\right)^3 \iff \left(\frac{z}{\sqrt{2}e^{i\frac{\pi}{4}}}\right)^3 = 1 \iff \frac{z}{\sqrt{2}e^{i\frac{\pi}{4}}} \in \mathbb{U}_3 = \left\{1, e^{i\frac{2\pi}{3}}, e^{i\frac{4\pi}{3}}\right\}.$

Les solutions de (\mathcal{E}_1) sont $\sqrt{2}e^{i\frac{\pi}{4}}$, $\sqrt{2}e^{i\frac{\pi}{4}}e^{i\frac{2\pi}{3}} = \sqrt{2}e^{i\frac{11\pi}{12}}$ et $\sqrt{2}e^{i\frac{\pi}{4}}e^{i\frac{4\pi}{3}} = \sqrt{2}e^{i\frac{19\pi}{12}}$

En observant que $1+i=\sqrt{2}\,\mathrm{e}^{i\frac{\pi}{4}}$, on lit instantanément dans la question précédente que :

les solutions de (\mathcal{E}_1) sont : 1+i, (1+i)j et $(1+i)j^2$.

2.a

Comme uv = 2, on a $u^3v^3 = 2^3 = 8$.

Par ailleurs, en utilisant la formule du binôme de Newton:

$$z^{3} = (u+v)^{3} = u^{3} + 3u^{2}v + 3uv^{2} + v^{3}$$
$$= u^{3} + 3uv(u+v) + v^{3}$$
$$= u^{3} + 6z + v^{3}$$

Or $z^3 - 6z = -4$, car z est solution de \mathcal{E} . Par conséquent, $u^3 + v^3 = -4$.

2.b

 u^3 et v^3 sont les deux nombres de somme -4 et de produit 8 donc u^3 et v^3 sont solutions de $z^2 + 4z + 8 = 0$.

L'équation $Z^2 + 4Z + 8 = 0$ est du second degré, son discriminant est $\Delta = -16 = (4i)^2$, ses solutions sont donc :

$$z_1 = \frac{-4+4i}{2} = -2+2i = w$$
 et $z_2 = \overline{w}$.

Or, selon la question 1.b : $u^3 = w \iff u \in \left\{ \sqrt{2} e^{i \frac{\pi}{4}}, \sqrt{2} e^{i \frac{11\pi}{12}}, \sqrt{2} e^{i \frac{19\pi}{12}} \right\}$.

De plus, en appliquant la conjugaison : $u^3 = \overline{w} \iff \overline{u}^3 = w \iff u \in \left\{\sqrt{2}\,\mathrm{e}^{-i\frac{\pi}{4}}, \sqrt{2}\,\mathrm{e}^{-i\frac{11\pi}{12}}, \sqrt{2}\,\mathrm{e}^{-i\frac{19\pi}{12}}\right\}$.

Ainsi, u se trouve parmi les six valeurs précédentes. De plus, par symétrie des rôles de u et v, on peut dire que les valeurs possibles pour u et v sont dans l'ensemble :

$$E_1 = \left\{ \sqrt{2} e^{i\frac{\pi}{4}}, \sqrt{2} e^{i\frac{11\pi}{12}}, \sqrt{2} e^{i\frac{19\pi}{12}}, \sqrt{2} e^{-i\frac{\pi}{4}}, \sqrt{2} e^{-i\frac{11\pi}{12}}, \sqrt{2} e^{-i\frac{19\pi}{12}} \right\}.$$

On cherche ainsi z tel que :

$$\begin{cases} u+v = z \\ uv = 2 \end{cases}$$
 avec u et v appartenant à E_1 .

Or, uv=2 implique que $\operatorname{Arg}(uv)\equiv 0$ $[2\pi]$ soit $\operatorname{Arg}(u)\equiv -\operatorname{Arg}(v)$ $[2\pi]$. En d'autres termes, u et v sont conjugués l'un de l'autre et il n'y a que trois cas possibles :

- $ightharpoonup ext{soit } \{u,v\} = \left\{\sqrt{2}\,\mathrm{e}^{i\frac{\pi}{4}},\sqrt{2}\,\mathrm{e}^{-i\frac{\pi}{4}}\right\}, ext{ et alors } z = \sqrt{2}\left(\mathrm{e}^{i\frac{\pi}{4}} + \mathrm{e}^{-i\frac{\pi}{4}}\right) = \sqrt{2}\times 2\cos\left(\frac{\pi}{4}\right) = 2;$

En conclusion, les solutions complexes de (\mathcal{E}) sont toutes réelles et sont $2, -1 - \sqrt{3}$ et $\sqrt{3} - 1$.

